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Preface

ix

This book introduces the reader to scientific programming in the BASIC
language. It is suitable either as a self-study resource or as a textbook
for a college course. The only prerequisite is a knowledge of calculus
and linear algebra through the level reached in a typical undergraduate
engineering curriculum; otherwise the book is essentially self-contained.
Some prior knowledge of BASIC programming may be helpful, but it is
not necessary. The required statements and operations are introduced as
needed. Problems appear at the end of each chapter. Answers are given
for all problems, either in the problem statements or at the back of the
book. Suggested solutions to the more difficult problems are given at the
back of the book.

The emphasis throughout the book is on writing computer programs
to solve scientific problems, not on the theoretical foundations of numerical
analysis. However, the numerical methods are explained as they are used.
Derivations of a few of the more complicated algorithms are given in an
appendix. Also, the book is not concerned with the BASIC language for
its own sake; many techniques that might be useful in other contexts,
such as business programming, are not considered.

The book can be used for convenient reference even by readers who
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Preface

are not interested in writing programs, since the programs are useful in
themselves and can be applied to practical problems.

The content of this book is similar to that of my earlier book on
programmable calculators (reference 8), but more extensive. Chapter 1
is an introductory chapter that presents the most important BASIC state-
ments and solves a number of representative problems. Chapter 2 is con-
cerned with finding roots of equations, and Chapter 3 evaluates a number
of commonly occurring higher transcendental functions. Chapter 4 is de-
voted to numerical integration, and Chapter 5 is concerned with differential
equations. Chapter 6 covers matrices and simultaneous equations. If the
book is used as a text, Chapter 1 and possibly the first section of Chapter
2 should be read first. The remaining five chapters are aimost entirely
independent of each other, and they may be read in any order. If the
book is used for reference, programs of interest can be extracted from
any part without studying the background material.

Details of the BASIC language vary from one model of computer
to another. The programs in this book are written in a simple version of
BASIC that works successfully with almost any microcomputer in common
use, as well as many larger computers. Special statements and operations
that work with only one or two models are avoided. The programs have
been run on four models of microcomputer: the TRS-80 (Models I and
III), the Apple (II Plus and Ile), the Commodore 64, and the TI-99/4.
The first three machines use Microsoft BASIC and the last uses a dialect
that is simiiar to standard BASIC. (The Ti-99/4A uses ihie same BASIC
as the TI-99/4.) Most of the programs will run as they stand on any of
these models, but a few may require minor editing. Lines that may require
editing are pointed out wherever they occur. While using this book, the
reader should have the manufacturer’s manual for his own model.

I wish to express my appreciation to Dr. J. T. Rice, Professor of
Mechanical Engineering at Pratt Institute, for reviewing the manuscript
and the programs from the standpoint of the TRS-80 and for many helpful
comments. I am also indebted to Professor J. A. Liebreich and the Reading
(PA) Area Community College for helpful advice and for allowing me
to use the computer laboratory to check the programs on the Apple II
Plus and the Apple Ile. Finally I wish to thank Mr. Terry Phelps for
helpful advice on the operation of the TRS-80.



Introduction

This chapter introduces the reader to computer programming in BASIC
(Beginner’s All-purpose Symbolic Instruction Code). This language, devel-
oped by J. G. Kemeny and T. E. Kurtz at Dartmouth College in the
1960s, is used with almost all microcomputers and with many larger com-
puters. No attempt is made in this book to give a comprehensive treatment
of the BASIC language because the details of the language vary from
one computer model to another. Instead, we use a simple version of BASIC
that works successfully with almost any popular model of microcomputer
that is suitable for scientific programming. Special statements and opera-
tions that work with only one or two models are avoided. The problems
considered in this chapter have been selected both because they are of
interest in themselves and because they illustrate important programming
techniques.

1-1. Elements of the BASIC Language

As a very simple example of programming, we consider the problem of
solving the equation

1 y=x+43 (1-1)
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with x = 2. The BASIC program is

10 X=2
20 Y=X+3
30 PRINTY

The lines are typed into the computer exacily as they are written. Afier
each line is typed in, it is entered into the memory of the computer by
pressing the ENTER key. (Some computers have a RETURN key instead
of an ENTER key.) All characters are capitals. Procedures for correcting
mistakes (editing) are not discussed here because they vary from one model
to another. The best source of information on editing is the appropriate
manufacturer’s manual.

The lines at the left are line numbers. In BASIC programming,
lines are noi usually numbered consecutively; it is customary to choose
line numbers that are multiples of 10. This system makes it easy to insert
additional lines if it becomes necessary to amend a program later. One
program line is not necessarily limited to one physical line on the screen;
with most microcomputers, a program line may occupy several lines on
the screen.

In this program, lines 10 and 20 are assignments. An equal sign in
BASIC assigns the value of the expression on the right to the variable
on the left. Although lines 10 and 20 of the sample program are valid
algebraic equations, an assignment in general may or may not represent
a valid algebraic equation. For example, the line J = J + 1 is a legitimate
BASIC assignment, but it is meaningless as an algebraic equation.

To run the sample program, type RUN and press the ENTER key.
The number 5 then appears on the screen. The calculation is made by
lines 10 and 20; line 30 prints the result.

Any letter from A to Z may be used as a variable name. All of
the commonly used versions of BASIC also allow variable names with
two characters. In two-character variable names, the first character must
be a letter; the second may be either a letter or a digit. Thus XN and
X1 are legitimate variable names; these program variables correspond to
x, and x, in ordinary algebra. Longer names may be used, but, in many
versions of BASIC for microcomputers, they are truncated to the first
two characters. Thus, for example, ALPHA may be used as a variable
name, but many microcomputers will abbreviate this internally to AL.
In this book we use short names; long names are inconvenient because
they necessitate a great deal of typing. Thus, for example, in programs
we will use the Greek letters XI, NU, and PHI, but not LAMBDA or
EPSILON.

In the original Dartmouth College BASIC of the 1960s, an assign-
ment had to be introduced by the statement LET. Also, the statement
END had to appear at the end of every program. These two requirements
have disappeared from virtually all current versions of BASIC, at least
for microcomputers, s0 we omit them from this book.
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In the original Dartmouth College BASIC, only one statement could
appear in each program line. Many and perhaps most current versions
of BASIC allow multiple statements on a line, usually separated by colons.
However, this flexibility is not universal. Throughout most of this book
we shall follow the conservative practice of using only one statement on
each line.

Line 30 of the sample program is a PRINT statement. This prints
the value of the indicated variable on the screen. A simple algebraic expres-
sion may be used in a PRINT statement. For example, we could condense
the program to

10 X=2
20 PRINT X+3

It is also possible to use words or the names of variables in the PRINT
statement, by enclosing them in quotation marks. Anything that is enclosed
in quotation marks will appear exactly as it is typed. When a variable
or algebraic expression is typed without quotation marks, its numerical
value is printed. Thus we may revise line 30 of the original program to

30 PRINT "Y=";Y
The result now reads
Y= 5

An expression that is enclosed in quotation marks is known as a string.
Items in a PRINT statement may be separated by either semicolons or
commas. A semicolon does not insert any space between items. However,
with most microcomputers, any number that is not in quotation marks
is automatically followed by a blank space. Also, a positive number is
preceded by a blank space. (The Apple is an exception; this computer
does not insert spaces automatically.) For a negative number, this space
is occupied by the minus sign. When two items are separated by commas,
the second item is printed in the next zone on the screen or printout.

There are six arithmetic operators in the BASIC language. These
are listed in order of decreasing priority. (Operations on the same line
have the same priority.)

@) aggregation

A exponentiation

*/ multiplication, division
+— addition, subtraction

There are no brackets or braces in BASIC; multiple levels of parentheses
are used. Operations in parentheses are performed first, starting with the
expressions inside the innermost parentheses. Exponentiations are per-
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formed next, followed by multiplications and divisions. Additions and
subtractions are performed last. Evaluations proceed from left to right.

A remark about the symbol for exponentiation may be desirable.
In the original Dartmouth College BASIC, the symbol T is used for expo-
nentiation. However, in some current versions of BASIC, the symbol 1
is used to move the cursor or scroll the display on the screen. The caret
A seems to be the most popular and least confusing symbol for exponentia-
tion, and it is used in this book. Thus, for example, x5 is written as
XAS5. Other symbols are also in use, and the nomenclature is not always
uniform even with respect to different computers made by the same manu-
facturer. For example, some Radio Shack models use 1, while others use
[. Any reader whose computer uses a symbol other than A can easily
make the appropriate changes in the programs.

Not all calculations made with a computer necessarily have to be
programmed. It is possibie to obtain resuits immediately afier the lines
are entered. This is accomplished by entering the appropfiate instructions
without line numbers. Returning to the first program of this section, we
enter

X=2
Y=X+3
PRINT Y

The resnlt 5 is displayed immediately after the last line is entered. This
mode of operation is known as the prompt mode, the immediate mode,
the command mode, or the calculator mode. An instruction that is used
in the program mode is known as a statement. An instruction that is
used in the prompt mode is known as a command. Thus RUN is a com-
mand. PRINT is a command in the present example, but in the earlier
examples it is a statement.

As a second example of programming, we consider the problem of
evaluating the polynomial

y=3—5x+2x2+ x3 (1-2)

The most efficient way to evaluate this is to start by writing it in nested
form as

y=3—x(5—x@2+ x)) (1-3)

We have used only parentheses instead of parentheses and brackets in
order to make the algebraic equation look as much as possible like the
program equation. We again choose the value x = 2. The BASIC program
is

10 X=2
20 Y=3-X¥(5-X*(2+X))
30 PRINT ”X:";X’“Y:u;y
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Again, we run the program by typing RUN and pressing the ENTER
key. The display then appears as follows:

X=2 Y=09

The result 9 can easily be verified directly.

A program is typically used to obtain a number of results with differ-
ent values of the independent variable. If this is done with the foregoing
programs, it is necessary to type a new line 10 each time. The INPUT
statement provides a more convenient way of handling this problem. We
rewrite the last program as

10 INPUT X
30 PRINT "X=";X,"Y=";Y

When the execution reaches the INPUT statement, the computer stops
and displays a question mark on the screen. The operator then enters
the appropriate number, and the computer proceeds to execute the pro-
gram. By running the program repeatedly with different values of x, we
obtain the results shown in the following table:

x —2 -1 01 2 3 4
y 13 9 3 1 9 33 79

The INPUT statement is less flexible than the PRINT statement.
In most versions of BASIC, the input must be a number; algebraic expres-
sions may not be used. However, it is permissible to include two or more
items in the same input line. For example, the line

10 INPUT A,B,C

is acceptable. The numbers are entered together in the same order in
which the variables appear, separated by commas.

The foregoing program is easy to use, but it is necessary to enter
RUN for each desired result. This can be avoided by modifying the program
as follows:

10 INPUT X

20 Y=3—X*(5—X*(2+X))
30 PRINT "X=":X,"Y="Y
40 GOTO 10

The statement GOTO followed by a line number transfers the execution
of the program to the beginning of the line indicated. Each time an evalua-
tion is completed, execution returns to line 10 to call for further input.
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Hence we type RUN only the first time the program is run. Thereafter
results are obtained by simply entering each value of x.

A difficulty arises when we have obtained all of the desired results
and are ready to proceed to some other problem; the computer is still
waiting for the next value of x. One way to break a perpetual cycle is
to turn off the computer. However, it is usually more convenient to press
the BREAK key. Every computer has a key or combination of keys that
performs this function. On most computers, it is called the BREAK key.
On the Apple Ile, the same thing is accomplished by simultaneously press-
ing the CTRL (control) and RESET keys. On the Commodore 64, the
procedure is to hold down the RUN/STOP key and hit the RESTORE
key.

Programs are often organized to print a blank line between successive
items of output. A blank line is generated by using a PRINT statement,
followed by nothing. With this modification, the program becomes

10 PRINT

20 INPUT X

30 Y=3—-X*(5—X*(2+X))
40 PRINT "X=";X,"Y=";Y
50 GOTO 10

It is possible to include a prompting message with the INPUT state-
ment. The format is simiiar to that of the PRINT siaicment. With this
modification, the program becomes

10 PRINT

20 INPUT "X=";X

30 Y=3—X*(5—X*(Q2+X))
40 PRINT "Y=";Y

50 GOTO 10

When the execution reaches line 20, the line X= or X="? appears on the
screen. (Some, but not all, computers omit the question mark when a
prompting message is used.) The operator enters a number, say 2. Line
30 then calculates the result y=9 and line 40 prints it. The final display
looks like this:

X=2
Y=09

The first line is due to the INPUT statement, and the second is due to
the PRINT statement. (With some computers, the first line may read
X=? 2.) Although the primary purpose of a prompting message is to
remind the operator what data to enter, it also serves to display the input
data on the screen. We now need only p in the PRINT statement instead
of x and y.
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The INPUT prompting message varies among computers. A few
computers require a colon instead of a semicolon; also, a few computers
do not allow prompting messages. We also point out that the present
discussion applies only to the screen display, like everything in this book.
Instructions for printers vary from model to model, and the best source
of information is the appropriate manufacturer’s manual.

The statement REM (remark) at the beginning of a program line
instructs the computer that the line is not used in the calculations. This
makes it possible to insert an explanatory remark. For example, we might
choose to add a title to the last program. Thus

1 REM: EVALUATION OF NESTED POLYNOMIAL

10 PRINT Generates blank line.
20 INPUT "X=";X Calls for value of x.
30 Y=3—-X*(5—X*(2+X)) Calculates y.

40 PRINT "Y=";Y Prints result.

50 GOTO 10 Returns for new input.

Remarks increase the length of a program, thus affecting both the amount
of typing and the space that the program occupies in the computer memory.
In this book we include very few remarks in the programs, with the excep-
tion of titles. Explanatory notes are given directly to the right of the
programs, as shown above. Notes have not been necessary for the simple
programs of this section, but they will be helpful for the more complicated
programs considered later. Any reader who wishes to do so may integrate
the notes into the programs as remarks. By using line numbers that are
not multiples of 10 for remarks, it is possible to do so without reworking
the entire programs.

Strings (quotations) may be assigned names and handled like ordinary
variables. The name of a string must end with a dollar sign. A string
may be referenced in a PRINT statement or in an INPUT statement.
Consider the following simple program:

10 A$="STRING"
20 PRINT A$

When the program is run, the word STRING appears on the screen.

A string must always be enclosed in quotation marks when used
in an assignment statement. However, most versions of BASIC allow a
simple string to be used without quotation marks in response to an INPUT
statement. Restrictions on punctuation vary among different versions of
BASIC. The reader is advised to consult his manual for details.

The BASIC language includes a number of scientific functions that
are built into the computer. Ten built-in functions are provided with any
model suitable for scientific programming. Each function is denoted by
a three-letter name, followed by the argument in parentheses.

There are three trigonometric functions, namely
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The argument is in radians. Most computers provide only one inverse

trigonometric function: the arc tangent, denoted as
ATNEX)

There are also an exponential function e and a natural logarithm. These
are

EXP(X) LOG(X)
The absolute value function
ABS(X)
returns the absolute value of the argument. The signum function
SGN(X)
has the values
sgn x =1 if x>0

=0

1 <0

Il
| <

I

The square root function
SQR(X)
returns the square root of a nonnegative argument. The integer function
INT(X)

returns the value of the largest integer that does not exceed the argument.

The argument of any of these functions may be a number, a variable,
a simple algebraic expression, or another function. Thus an expression
such as EXP(SIN(X)) is legitimate.

1-2. Discontinuous Functions: The IF-THEN Statement

It is often necessary to evaluate a function that is given by one formula
over one part of an interval and by a different formula over another part
of the interval. The IF-THEN statement is very useful for problems of
this type. The statement consists of the words IF and THEN, separated
by an equation or inequality and followed by a line number. If the relation
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is satisfied, the execution of the program is transferred to the beginning
of the line indicated. If it is not, execution continues with the next program
line. Consider the function

y=1,x<0 y=x+2,x20 (1-4)

which is sketched in Fig. 1-1. The program is

10 PRINT Generates blank line.

20 INPUT X Calls for value of x.

30 IF X<0 THEN 60 Transfers execution if x<<0.

40 Y=X+2 Calculates y if x>0.

50 GOTO 70 Transfers to PRINT statement.
60 Y=1 Calculates y if x<0.

70 PRINT "X=";X,"Y=".Y Prints x and y.

80 GOTO 10 Returns for further input.

Line 10 creates a blank line between successive sets of output. Line
20 is an INPUT statement that calls for the value of x. Line 30 is an
IF-THEN statement. If x < 0, execution is transferred to line 60, where
y is assigned the value 1. Otherwise execution continues with line 40,
which sets y equal to x + 2. In either case, execution then proceeds to
lines 70 and 80. Line 70 prints the results and line 80 sends the execution
back to the beginning to call for new input. Some numerical results follow:

x =2 —1 0 1 2 3
y 1 1 2 3 45

This program can be rewritten a little more concisely, as follows:

10 PRINT
9 20 INPUT X
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30 Y=1

40 IF X<0 THEN 60

50 Y=X-+2

60 PRINT "X=";X,"Y=";Y
70 GOTO 10

The evaluation starts by letting y = 1. If x < 0, this is the final result.
If it happens that x > O, this result is overwritten by line 50. The results
are identical to those given by the first program.

Some versions of BASIC allow an equation to be used after THEN
instead of a line number. The statement ELSE may also be added to
cover the case that is excluded by the relation between IF and THEN.
For a computer that uses this type of BASIC, a third program is

10 PRINT Generates blank line.

20 INPUT X Calis for value of x.

30 IF X<0THEN Y=1 ELSE Y=X+2 Calculates y.

40 PRINT "X=";X,"Y=";Y Prints x and y.

50 GOTO 10 Returns for further
input.

This type of programming is not used in this book, because many versions
of BASIC do not allow it. Actually there is very little difference in length
between the last two programs. The lasi program combines iluee shoit
lines into one long line.

We have used the operators = and < without comment. There are
six relational operators in BASIC. Each appears directly below its corre-
sponding algebraic operator, as follows:

+= > =z <

<> > =< <=

IA

Relational expressions are sometimes useful. An expression such as
(A = B) has the value 0 if the relation is false. If the relation is true, its
value is 1 or —1, depending on the version of BASIC used by the computer.
We now write a fourth version of the program using a relational expression:

10 PRINT

20 INPUT X

30 Y=1-+X+1)*ABS(X>=0)
40 PRINT "X=";X,"Y=";Y
50 GOTO 10

Whenever a relational expression appears in this book, we use the absolute
value in order to eliminate the ambiguity in sign. Programs written in
this way can be used on almost any popular model of microcomputer
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without editing. If a program is to be used on one model only, any user
who wishes to do so may delete the ABS statement and insert the appropri-
ate sign.

The foregoing methods work well when the transition point is on
one of the branches of the curve. If the transition point is elsewhere, as
sketched in Fig. 1-2, three equations are necessary to define y as a function
of x, and the program becomes a little more complicated. We modify
Eq. 1-4 to let y = 1.5 at x = 0. A program follows:

10 PRINT Generates blank line.

20 INPUT X Calls for value of x.

30 Y=1 Calculates y.

40 IF X<0 THEN 90 Transfers execution if x<0.

50 IF X=0 THEN 80 Transfers execution if x=0.

60 Y=X+2 Recalculates y if x>0.

70 GOTO 90 Transfers to PRINT statement.
80 Y=1.5 Recalculates y if x=0.

90 PRINT "X=";X,"Y=";Y Prints x and y.
100 GOTO 10 Returns for further input.

The results are identical to those found previously except that y = 1.5
when x = 0.
With relational expressions, the program becomes

10 PRINT
20 INPUT X

30 Y=1+(X+1)*ABS(X>0)+ABS(X=0)/2
40 PRINT "X=";X,"Y=";Y

50 GOTO 10

The six lines 30 through 80 are now combined into the single line 30.

FIG. 1-2
y




12 The last two methods work for any value of y at the transition
Introduction point. When the transition point is midway between the two branches,
the simplest possible program is obtained by using the signum function.
With this function, the equation for y becomes
y=1 [x+ 3+ (x + 1)sgn x]
The program is
10 PRINT
20 INPUT X
30 Y=(X+3+X+1)*SGN(X))/2
40 PRINT "X=";X,"Y=";Y
50 GOTO 10
The results are identical to those found with the preceding program.
The ON-GOTO statement is occasionally used instead of multiple
[F-THEN statements. This consists of the words ON and GOTO, separated
by a variable or algebraic expression and followed by a group of line
numbers. The expression is evaluated and truncated to an integer. Let
the result be n. Then the execution is transferred to the nth designated
line number. With this statement, the program becomes
10 PRINT Generaies biank line.
20 INPUT X Calls for value of x.
30 ON SGN(X)+2 GOTO 40,60,80 Transfers execution to appropriate line.
40 Y=l Calculates y if x<O.
50 GOTO 90 Transfers to PRINT statement.
60 Y=1.5 Calculates y if x=0.
70 GOTO 90 Transfers to PRINT statement.
80 Y=X+2 Calculates y if x>0.
90 PRINT "X=";X,"Y=";Y Prints x and y.
100 GOTO 10 Returns for further input.

Results are again identical to those found with the preceding programs.

It is sometimes necessary to write a program for a periodic function.
The INT (integer) statement is often useful for problems of this type.
Consider the periodic function sketched in Fig. 1-3, which represents the
equation

y=x+1 0<x<2 (1-5)

and is repeated indefinitely in the direction of positive (or negative) x.
The program is

10 PRINT
20 INPUT X
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30 Y=X—2*INT(X/2)+1
40 PRINT "X:";X,"YZ";Y
50 GOTO 10

If the transition points are not on the branches of the curve to the
right of the discontinuities as shown in Fig. 1-3, the foregoing program
must be modified. Let y = 2 at the transition points. Then the program
becomes

10 PRINT

20 INPUT X

30 U=X—-2*INT(X/2)

40 Y=U+1+ABS(U=0)

50 PRINT "X="X,"Y=";Y
60 GOTO 10

The program is self-explanatory. We have inserted an intermediate step
in the evaluation of y.

1-3. The FOR-NEXT Loop

13

Repetitive calculations occur very frequently in scientific applications. The
FOR-NEXT loop is very useful for problems of this type. To introduce
this technique, we consider the problem of finding the sum of the first
integers, that is, we evaluate the sum

S=14+24+34.. .+n (1-6)

The program is

10 PRINT Generates blank line.
20 INPUT N Calls for value of n.
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30 S=0 Initializes S.

40 FORJ=1 TON

50 S=S+J }Calculates S.

60 NEXTJ

70 PRINT "N=";N,"S=";S Prints n and S.

80 GOTO 10 Returns for further input.

The program is straightforward. Line 10 generates a blank space between
successive items of output. Line 20 calls for the input n. Line 30 assigns
the initial value O to S, the partial sum of the series on the right side of
Eq. 1-6. Lines 40 through 60 constitute the FOR-NEXT loop. When the
FOR statement is reached in line 40, the value of j is set equal to 1.
Execution then continues to line 60. The NEXT statement adds 1 to the
value of j and compares the result with the upper limit n of line 40. If
the incremented value of j is not greater than n, execuiion returns o
the line immediately following the FOR-TO statement (line 50}, and the
cycle is repeated. After the last (nth) cycle, execution continues with the
next program line (line 70). The n cycles constitute a loop. Line 70 prints
the results, and line 80 returns the execution of the program to the begin-
ning in preparation for further input.

There is a slightly more general version of the FOR-TO statement
than the one given in line 40. The increment does not necessarily have
to be 1. An optional STEP statement may be added. Thus, for example,
we mighi ave

40 FOR J=1 TO 10 STEP 3

The running variable j now assumes the values 1, 4, 7, 10. The step size
may be either positive or negative. We also point out that the upper limit
does not have to coincide exactly with one of the values of the running
variable. The running variable takes on whatever values are possible with-
out exceeding the upper limit. Thus, for the case

40 FOR J=2 TO 15 STEP 4

the running variable j assumes the values 2, 6, 10, 14.
In exactly the same way we write a program to evaluate the factorial

nl=1-2-3...n (1-7)
The program is

10 PRINT

20 INPUT N

30 P=l

40 FOR J=1TO N
50 P=J=P
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60 NEXT]J
70 PRINT "N=";N,"N!=";P
80 GOTO 10

This program works in the same way as the first program of this section.
The parameter P is the partial product on the right side of Eq. 1-7.

When the running variable runs from 1 to n, where # is a positive
integer and the step size is 1, the cycle runs n times. However, the case
n = 0 sometimes presents a problem. In standard BASIC the upper limit
is checked before the cycle runs. If this is less than the initial value of
the running variable, the cycle does not run (unless the step size is negative).
Hence the loop operates correctly in the case n = 0; the cycle runs zero
times. Most large computers and some microcomputers operate in this
way. However, in the versions of BASIC used by most microcomputers,
no check is made until the NEXT statement is reached at the end of
the loop. Hence the cycle always runs at least once, even if n = 0. The
result obtained from the first program when n = 0 should be 0; actually
it may be either O or 1, depending on the computer used. Usually this
does not matter much; the correct result for n = 0 is obvious by inspection,
and a computer evaluation is not necessary. However, a program of the
present type sometimes appears as a segment in a more complicated pro-
gram in which the case n = 0 may not be trivial. In this case the evaluation
should be valid for any integral value of n > 0. This is accomplished by
inserting an IF-THEN statement to bypass the loop when n = 0. Programs
written in this way will work with either type of computer. An even
simpler remedy for the first program is to change the lower limit in line
40 from 1 to 0.

No matter what type of computer is used, the second program leads
to the correct result 0! = 1. Since the first cycle consists of a multiplication
by 1, it does not matter whether it runs.

The FOR-NEXT loop is very useful in summing series. Consider

+—t—=+. .. (1-8)

Some preliminary transformations are necessary, since the series converges
so slowly that it would be impractical to evaluate it as it stands. After
the first few terms, the general term is essentially 1/j2, and the error is
of order 1/n, where n is the number of terms considered. It would be
necessary to consider many thousands of terms to obtain a reasonably
accurate value of the sum. The convergence can be greatly improved by
using the known fact that

1w
=1j: 6
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6 =GR+

The general term is now essentially 1/ j4, and the error is of order 1/n%
A further improvement is obtained by using the formula

R B Ut DS i}
S——*n'z[ ]+]§1j402+1) (1-9)

The general term is essentially 1/j6, and the error is of order 1/n® The
program follows:

10 PI=4*ATN(1) Calculates .

20 S=PI*PI*(1/6—PI*PL/90) Evaluates constant in equation 1-9.
30 INPUT "N=";N Calls for value of n.

40 FOR J=1TO N

50 S=S+1/IA4/(J*J+1) }Calculates S.

60 NEXTJ ;

70 PRINT "S=";S Prints result.

Line 10 calculates 7. (With any computer such as the Commodore 64
that has a built-in constant for s, this may be used instead, although
the present program can be used as it stands.) Line 20 evaluates the constant
on the right side of Eq. 1-9. Line 30 calls for the number of terms 7.
Lines 40 through 60 constitute a FOR-NEXT loop that sums the series
on the right side of Eq. 1-9. Line 70 prints the result. Results found by
the program with several values of n are

n 10 20 30 40
S 1.0766725 1.07667399 1.07667404 1.07667405

In a problem of this type it is highly desirable to make several approxi-
mations, because the easiest way to estimate the accuracy of the result
is to compare successive approximations. It is not necessary to repeat
the entire calculation each time. The following program is set up so that
each evaluation begins with the result of the next lower approximation.
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10 PI=4*ATN(1) Calculates 7.

20 S=PI*PI*(1/6 — P1*P1/90) Evaluates constant in Eq. 1-10.
30 J=1 Initializes j.

40 PRINT Generates blank line.

50 INPUT "N=";N Calls for value of n.

60 FOR J=J to N

70 S=S+1/IN4/(J*J+1) }Calculates S.

80 NEXTJ

90 PRINT "S=";S Prints result.
100 GOTO 40 Returns for further input.

Numerical results are identical to those given by the previous program.
The nested format of Sec. 1-1 is very useful for summing certain
types of series. Consider

1,1-2 123
=ldo+—S+—=4 .
S=lts4istst (1-10)

In nested form, this becomes
1 2 3
S=14+-1+={14+=0+...
+ 3[ + 5 ( 7 ( )>]

The program follows:

10 PRINT Generates blank line.

20 INPUT "N=";:N Calls for value of n.

30 S=1 Initializes S.

40 FOR J=N-1 TO 1 STEP —1

50 S=14J/(2*J+1)*S }Calculates S

60 NEXT]J

70 PRINT "S=";§ Prints result.

80 GOTO 10 Returns for further input.

The program is set up to obtain repeated approximations. Line 10
is an optional line that generates a blank space between successive sets
of data. Line 20 calls for the desired number of terms. The starting value
1 in line 30 is the 1 at the extreme right of the nested equation. Lines
40 through 60 constitute a FOR-NEXT loop that sums the nested series.
The calculation proceeds from right to left, ending with the first 1 on
the right side of the equation. The n — 1 cycles give the sum of n terms
of the original series. Line 70 prints the result. Line 80 is an optional
line that makes it possible to obtain further approximations without enter-
ing RUN each time. (However, with the nested format it is not possible
to reuse previous approximations.) We obtain the following results:
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n 10 20 30
S 1.570289 1.57079 5964 1.57079 6327

The last result is the exact value /2, correct to ten significant figures.

We have used the FOR-NEXT loop to deal with repetitive steps
within a calculation. A loop is also useful for a case in which an entire
calculation must be repeated a number of times. We return to Eq. 1-3
of Sec. 1-1, which is

y=3—x(5—x@2+ x))

Again, we desire the values of y corresponding to integral values of x
from —2 to 4. Instead of running the program of Sec. 1-1 repeatedly,
we now use a FOR-NEXT loop. The revised program is

10 PRINT " X"," Y"

20 FOR X=—2 TO 4

30 Y=3-X#(5—X*Q2+X))
40 PRINT X,Y

50 NEXT X

The program is set up so that the results appear as the following table:

33
79

|
-P-UJN'—-‘O'—*I\}J P4
(¥S]

The leading spaces inside the quotation marks in line 10 align the characters
X and Y with the first digits of the numbers that appear below them.
For any computer such as the Apple that does not print leading spaces
with numeric output, these may be omitted.

The foregoing solution works because the values of the argument
x are uniformly spaced; therefore the running variable in the FOR-NEXT
loop can be used as the argument x. Now suppose that we require the
values of y corresponding to a number of irregularly spaced values of
x—say x = —2, 0, .5, 2.3. The READ and DATA statements are useful
for this problem. These statements provide the third method of introducing
data into a computer. (The first two are the assignment and the INPUT
statement.) The numerical values are inserted into a DATA statement
and assigned to the appropriate variable or variables by a READ statement.
With these statements, the program becomes
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10 PRINT " X"," Y"

20 FOR J=1TO 4

30 READ X

40 Y=3—X*(5—-X*(2+X))
50 PRINT X,Y

60 NEXTJ

70 DATA —2,0,.5,2.3

The results appear as the following table:

X Y

-2 13
0 3
5 1.125
2.3 14.247

On the first cycle, the READ statement reads the first entry in the data
line. On each successive cycle, it moves one step to the right to read a
subsequent data entry. Two or more data entries may be read by one
READ statement; for example, in line 30 we might have READ X,Y,Z.
However, the total number of items read may not exceed the total number
of data entries, unless the data are restored. The RESTORE statement,
which is used later, causes the READ statement to start over and read
the data from the beginning. The data may be spread over two or more
DATA statements; the READ statement starts at the beginning and pro-
ceeds through all the data lines. Also, data lines may appear anywhere
in a program, but it is preferable to place all of them together, either at
the beginning or at the end.

A very important practical example of this programming technique
occurs in the problem of fitting a straight line through a set of experimental
points, as shown in Fig. 1-4. This problem occurs repeatedly in science
and engineering. Suppose that we have experimental data for a set of
points as follows,

X1 X2 Xz ... Xn
Vi Y2 Yz ... Xn
y FIG 1-4
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and we wish to find the best values of the coefficients a and b in the
equation

y=ax+b
The most commonly used procedure is the method of least squares. We

find the values of @ and b that make the sum of the squares of the errors
a minimum. In other words, we minimize the expression

2(yj~axj-—b)2=(y1—ax1—b)2+(yz——ax2——b)2+. ..

(All the summations in this analysis run from j = 1 to n; we do not
write the limits each time.) Setting the partial derivatives of this expression
with respect to a and b equal to zero leads to the equations

Sxi(y; —ax; — b)=0
E(y,- —axj — b)=0

which can be rewritten as

aZx;?+ bEx; = ZX;p;
aXx; + nb=2y;

By solving for @ and b, we find that

_ nIxy —Ex;2y;  nv st
nZx2—(Ex)? nu—s?

1 -
b== (3y —aZx)= *

The following substitutions have been made:

s =2x; t=23yj
u = Zx;? v = 2 XY

A program follows for the data:

x 1.0 21 27 38 46 56 70
y; .43 .85 103 142 159 204 253

1 REM: ANALYSIS OF EXPERIMENTAL DATA

10 N=7 Assigns value of n.

20 FOR J=1TO N ‘I

30 READ XY

40 S=S+X

50 T=T+Y Calculates S,T,U,V.

60 U=U+X*X



21 70 V=V+X*Y
) 80 NEXT]J
Introduction 90 A-‘—‘(N*V*—S*T)/(N*U*‘S*S)
100 B=(T—S*A)/N
110 PRINT "A=";A
120 PRINT "B=";B
130 DATA 1.0,.43,2.1,.85,2.7,1.03,
3.8,1.42,4.6,1.59,5.6,2.04,7.0,2.53

Calculates a and b.

Prints results.

Data line.

[ S} SRR SN

Line 1 is the title. Line 10 assigns the value of n. Lines 20 through 80
constitute a FOR-NEXT loop that reads the values of the x;s and yis
from the data line and calculates s, ¢, u, and v. Lines 90 and 100 calculate
a and b, and lines 110 and 120 print the results. Line 130 is the data
line. Lines 10 and 130 are filled in by the user each time the program is
run. With the present sequence, we obtain the results

a =344 b = .094

One further comment is needed. We have not assigned the initial values
of zero to the variables S, T, U, and V. With most computers this is
not necessary because the RUN command automatically sets all variables
equal to zero. For any computer that does not have this feature, the varia-
bles S, T, U, and V must be initialized. This can be done by inserting
assignment lines between lines 10 and 20.

1-4. The Subroutine: The User-Defined Function

A program often performs the same action in several places. Instead of
writing the same line repeatedly, it is usually more convenient to write
it only in one place, as a subroutine. This is accomplished by using the
GOSUB and RETURN statements. The GOSUB statement, followed by
a line number, transfers the execution to the line specified, which is the
subroutine. Execution then proceeds until the RETURN statement is
reached, when it returns to the original point following the GOSUB state-
ment. To illustrate the use of a subroutine, we consider the problem of

evaluating

Y =f(x1) = 3f(x2) + 2f(xs) 1-11)
where

f(x) =3 = 5x + 2x2 4 x3)/2 . (1-12)

The program is
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10 INPUT X1,X2,X3 Calls for values of xs.

20 X=Xl

30 GOSUB 140 }Calculates f(x1).
40 FI=F

50 X=X2

60 GOSUB 140 }Calculates S(x2).
70 F2=F J

80 X=X3

90 GOSUB 140 }Calculates f(x3).
100 F3=F

110 Y=F1-3*F2+2%F3 Calculates y.
120 PRINT Y Prints p.
130 END END statement.
140 F=SQR(3—X*(5—X*(2+X))) Subroutine.

150 RETURN RETURN statement.

Line 10 calls for the values of x;, x,, and x3. Lines 20 through 40 calculate
f(x;) by using the subroutine of line 140, which represents Eq. (1-12).
(The nested format is used.) Lines 50 through 70 calculate f(x2), and
lines 80 through 100 calculate f(x3s). Line 110 represents Eq. 1-11. Line
120 prints the result. Line 140 is the subroutine and line 150 is the RE-
TURN statement. The END statement of line 130 is necessary to prevent
the execution from running into line 140 after line 120 has been executed.
In most versions of RASIC, either STOP or END may be used in line
130. The END statement is preferable because, with most microcomputers,
the STOP statement generates a BREAK message. If we expect to continue
with other sets of input data, GOTO 10 may be preferable to either STOP
or END in line 130.

As a numerical example, we let x; =1, x2 = 2, x5 = 3. The result
is y = 3.489125293.

A user-defined function can often be used as an alternative to a
subroutine. The rules for defining and using a user-defined function vary
considerably among different versions of BASIC. We shall adopt a narrow
version that works on almost any popular model of computer or microcom-
puter with this feature. First the function is defined by using the statement
DEF. The name of the function follows; it consists of three letters, the
first two of which are FN. This is followed by the argument in parentheses
and then an equal sign, after which the function is written out. After a
function has been defined in this way, it may be used later in the program
in exactly the same way as a built-in function. A program follows for
the problem of Egs. 1-11 and 1-12, this time employing a user-defined
function.

10 INPUT X1,X2,X3

20 DEF FNF(X)=SQR(3—X*(5—X*(2+X)))
30 Y=FNF(X1)—3*FNF(X2)+2*FNF(X3)
40 PRINTY
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program.

The subroutine and the user-defined function are often but not always
interchangeable. The user-defined function is suitable only for a simple
function that can be defined in a single line. The subroutine can be used
for a function of any degree of complexity, since any number of lines
may be used in a subroutine. In this book, we do not make much use of
the user-defined function, because some microcomputers, such as the TRS-
80 cassette models, do not have this feature.

Introduction

1-5. Recurrence Formulas; Legendre Polynomials

Recurrence formulas occur in many practical problems, such as the numeri-
cal solutions of differential equations. As a simple example, consider

Xj+1=3Xj “2Xj~1+ 1 (1‘13)
Two initial values are specified, say x; = 1 and x, = 2. It is required to
find the subsequent terms of the sequence of x;s through x,. A program

follows:

1 REM: SECOND ORDER RECURRENCE FORMULA

10 READ X1,X2 Reads initial values.
20 INPUT N Calls for value of n.
30 PRINT X1

40 PRINT X2 } Prints initial values.

50 FORJ=3to N
60 X3=3*X2-2*X1+1

70 X1=X2 Calculates and prints

80 X2=X3 subsequent Xx;s.

90 PRINT X3
100 NEXTJ

110 DATA 1,2 Data line for initial values.

Line 1 is the title. Line 10 reads the initial values x; and x. from the
data line 110. Line 20 calls for the value of n, the desired number of
terms. Lines 30 and 40 print the initial values x; and x,. Lines 50 through
100 constitute a FOR-NEXT loop that calculates subsequent terms of
the sequence. Line 60 represents Eq. 1-13. Lines 70 and 80 reassign the
values of the x;s so that the last two values become x; and x; in preparation
for the next cycle. Line 90 prints the result of each cycle. With n = 8,
we obtain the sequence 1, 2, 5, 12, 27, 58, 121, 248. (It can be shown
that the analytical solution is x; = 27 — j.) The same program can be
used for any other second-order recurrence formula; only the equation
line 60 and the data line 110 have to be changed.

The same method can be used to write a program for the Legendre
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polynomials, which are considered in advanced calculus. The first few
are

Po(x)=1 (
P1(.x) =X (

1 .
Pax) =537 = 1) (1-14¢)

Py(x) = l"z—(sx2 -3) (1-14d)

PUx)= é(35x4 — 30x2+3) (1-14e)
Py(x) = 3;-(63x4 — 70x2 + 15) (1-14)
The general recurrence relation is

Py si(x)= ;—Jl;—l- [2n + 1)xPp(x) — nPy-1(x)] (1-15)

A program follows:
1 REM: LEGENDRE POLYNOMIALS
10 PRINT Generates blank line.
20 INPUT "ENTER N,X";N,X Calls for values of n and x.
30 IF N>1 THEN 60
40 P2=1+N*(X—1)
50 GOTO 130
60 PO=1
70 P1=X

80 FOR J=1TO N—1 }

Considers case n=0
or n=1.

Initializes variables.

90 P2=((2*J+1)*X*P1-J*P0)/(J+1)
100 PO=P1

110 Pi=P2

120 NEXTJ

130 PRINT "N=";N,"X=";X Prints n and x.

140 PRINT "PN(X)=";P2 Prints P,(x).

150 GOTO 10 Returns for further input.

Calculates Py (x).

Line 1 is the title. Line 10 skips a line between successive results. Line
20 calls for the values of n and x. Lines 30 through 50 take care of the
special cases n = 0 and n = 1. The remainder of the program deals
with the case n > 2. Lines 60 and 70 assign the appropriate values to
Py(x) and Pi(x). Lines 80 through 120 constitute a FOR-NEXT loop
that calculates P,(x). Line 90 represents Eq. 1-15, and lines 100 and
110 reassign the values of the Ps in preparation for the next cycle. Lines
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, the beginning in preparation for further input.
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1-6. Subscripted Variables

We have used subscripted variables in a number of algebraic equations.
However, we have not yet used subscripted variables in the programs.
Variables with one, two, three, or more subscripts may be used in BASIC.
Subscripts in the program variables are indicated by parentheses; thus
X3 and x; become X(3) and X(1,2), respectively. The subscripts must
be positive integers or zero. Variables may be used as subscripts. Sub-
scripted variables are handled in exactly the same way as ordinary variables.
The two applications that follow illustrate the use of subscripted variables.

At times it is necessary to obtain a value of a function from a table
by interpolation. A good table usually makes it possible to obtain satisfac-
tory accuracy for most engineering calculations by linear interpolation.
This can easily be done in the prompt mode, and a program is not necessary.
However, if high accuracy is required or if the available table gives results
only for widely spaced values of the argument, higher-order interpolation
is needed unless the argument coincides with one of the tabulated values.
One commonly used procedure is known as Lagrange interpolation, in
which the desired function is approximated by a polynomial of order
n — 1, using data from n points. For linear interpolation (n = 2), the

formula is
X ™ Xg X ™ X3
= -+ 1-16a
Y xl-xzyl x2~x1y2 ( )

For quadratic interpolation (n = 3), the formula is

— (x — x2)(x — x3) (x — x)(x — x3) (x = x)(x — x3)
(x1 = x2)(x1 — x3) ! (x2 = x1)(x2 — x3) ? (23— x1)(x3 — X2)

s (1-16b)

For cubic interpolation (n = 4), the formula is

__(x = xa)(x — x3)(x — x4) (x = x)(x — x3)(x — x4)
(X1 = x2)(x1 — x3)(X1 — Xy4) ' (x2— x1)(x2 — x3)(x2 — x4) z

y

(x = x2)(x — x)(x — x4) (x = X)(x — x2)(x — x3)
(xa = x1)(xs = X2)(xs = X4) 7" (x4 — x1)(xs — x2)(xs — x3) > *

(1-16¢)

The foregoing equations are clearly exact at the base points x = x;. The
base points do not have to be uniformly spaced, although they usually
are when the method is used to interpolate in values from a table. The
general formula for n base points is
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y=3 i a1
j=ri=1 X% T X Vs
ij

The program follows. It is set up to evaluate the Bessel function Jo(x)
at the point x = 1.15, using known values of Jo(x) at the points x = .9,
1.0, 1.1, 1.2, 1.3, 1.4, These are taken from a table on page 390 of refer-
ence 1.

1 REM: LAGRANGE INTERPOLATION

10 INPUT "ENTER N, XN, X Calls for values of n and x.
20 FOR J=11to N

30 READ X(1),Y() }Reads tabular data.

40 NEXTJ

50 S=0 Initializes S.

60 FOR J=1 TON 1

70 UQ)=Y(Q)
80 FOR I=1 TO N

90 IF I=J THEN 110 Calcu- LCalcw

100 UQ)=UQ)*(X—X@)/(XJ)—X(D)) lft N
110 NEXT I i g
120 S=S+UQJ)

130 NEXTJ

140 PRINT S Printe resnlt.

150 DATA 1.1,.7196220185,1.2,.6711327443,
1,.7651976866,1.3,.6200859896, }Data lines.
.9,.8075237981,1.4,.5668551204

Line 1 is the title. Line 10 calls for the values of n and x. Lines 20

through 40 read the values of the x;s and y;s from the data line. Line

50 assigns the initial value 0 to S, the partial sum on the right side of

Eq. 1-17. The remainder of the program consists essentially of a nested

FOR-NEXT loop. The inner loop of lines 80 through 110 evaluates the

product u; on the right side of Eq. 1-17, and the outer loop of lines 60

through 130 evaluates the sum. Line 140 prints the result, and line 150

contains the values of the x;s and yjs.

The correct result to ten significant figures is .6957197635. With
n = 2, (linear interpolation), we obtain .6953773814, which is correct
to three significant figures. With n = 4, the result is .6957193243, which
is correct to six significant figures. With n = 6, we obtain .6957197628,
which is correct to nine significant figures.

This program runs as it stands on almost any microcomputer in
common use; only the data line 150 must be filled in for each application.
However, a few computers, such as the TI-99/4, do not allow the same
character to be used as both an ordinary variable and a subscripted variable.
On any machine that has this limitation, a different name, such as xi,
must be used for the unsubscripted x in iines 10 and 1G0.
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It is sometimes necessary to use inverse interpolation, that is, to
find the value of an independent variable corresponding to some specified
value of the dependent variable. Lagrange interpolation is well suited to
this problem, since the base points do not have to be equally spaced.
We use exactly the same procedure as that just given, but we call the
dependent variable x and the independent variable »

The practical utility of higher-order interpolation is rather limited.
Results can usually be obtained with better accuracy and less labor by
evaluating the function directly. Programs for Legendre polynomials have
been given in Sec. 1-5; programs for a number of other higher mathematical
functions are given in Chapter 3. If it is desired to use a table, the best
procedure is to find a good table with reasonably closely spaced values
of the argument. Most of the tables of reference 1 give results only for
very widely spaced values of the argument. They are very good for checking
a program or for examples in which the argument can be chosen to fit
the table, but they are not suitable for practical problems.

When a subscripted variable is used, the BASIC language sets aside
eleven spaces in the data memory for subscripts O through 10. This is
usually more than enough for the Lagrange interpolation program; in
the example considered, the approximation n = 4 led to a result that is
good enough for most practical applications. If large values of n are re-
quired, the DIM (dimension) statement is used. This consists of the state-
ment DIM followed by the name of the variable, followed by the value
of the highest subscript in parentheses. Thus, for example, to use the
Lagrange interpolation program with n = 20, we could insert the line

5 DIM X(20)

A program for sorting numbers further illustrates of the use of sub-
scripted variables. Suppose that we have a sequence of numbers arranged
in random order. We want to write a program to arrange them in correct
numerical order, increasing from left to right. Before writing the program,
it may be helpful to consider how the sorting process will be organized.
We need a nested loop. The inner loop compares successive pairs of data
and arranges each pair in correct order, running from left to right through
the sequence. The outer loop then repeats this operation. If there are n
input numbers, the inner loop initially runs n — 1 times; the outer loop
also runs n — 1 times. We trace the following input data through n —
1 = 4 cycles of the inner loop (one cycle of the outer loop):

L N N Y
W W W W A
NN WL W W
NN BN
L R S O v
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The highest number is now at the right. For the next cycle of the outer
loop, we need only n — 2 =3 cycles of the inner loop. The result is

321435

The third and fourth cycles of the outer loop lead to

1

which is the desired result. The required number of cycles of the inner
loop decreases by 1 with each successive cycle of the outer loop.

i REM: SORTING NUMBERS

.-‘
)
Z,
I
A
o

Assigns value of n.

20 FOR J=1TO N
30 READ X@J) Reads numbers to be sorted.
40 NEXT]J :

50 FOR J=1 TO N—1
60 FOR I=1 TO N—J
70 IF X(I)<=X(I+1) THEN 110

80 T=X(I)

90 X(D=X{+1) Sorts numbers.
100 X(I+D=T
110 NEXT I
120 NEXT]J

130 FOR J=1 TO N—1

140 PRINT X(I);"."% Prints sorted sequence.

150 NEXTJ
160 PRINT X(N)
170 DATA 7,3,5,9,4,6,2,10,8,1 Data line.

In the preceding program, line 1 is the title. Line 20 assigns the value
of n, the number of terms to be sorted. Lines 20 through 40 constitute
a FOR-NEXT loop that reads the values of the numbers to be sorted.
Lines 50 through 120 constitute a nested FOR-NEXT loop, which sorts
the numbers according to the scheme already discussed. The inner loop
runs from line 60 through line 110. Line 70 compares two successive
numbers x; and x;+; to see whether they are in the correct order (with
the larger number at the right). If they are not, they are interchanged
in lines 80 through 100. During the exchange operation, x; is given a
temporary label ¢ so that its value is not lost when it is replaced by
x;+1. If the terms are in correct order, the exchange operation is skipped.
The FOR-NEXT loop of lines 130 through 150 prints the first n — 1
terms of the sorted sequence, followed by commas. Line 160 prints the
last term. Line 170 is the data line. This contains the sequence
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7,3,5,9,4,6,2,10,8,1
By running the program, we obtain the sorted sequence
1,2,3,4,5,6,7,8,9,10

The same program can easily be applied to other sequences. Lines 10
and 170 are filled in by the user each time the program is run.*

If more than ten terms are to be sorted, a DIMension statement
must be used. If there are 20 terms, we may insert the following line:

5 DIM X(20)

The same thing can be accomplished in a slightly different way by inserting
the line

15 DIM X(N)

The second method is by far the more convenient way of using a DIMension
statement, because the line can be left as a permanent part of the program
and does not have to be adjusted each time the program is used. However,
some computers, such as the TI-99/4 and some Apples, do not allow a
variable to be used as the index in a DIMension statement. With any
machine that has this limitation, the most convenient procedure is to
insert a large number as the index in line 5, then leave it as a permanent
part of the program.

Either the INPUT statement or the DATA statement can be used
in a program for sorting numbers; the choice is a matter of individual
preference. If it is necessary to correct an error or make a change in the
sequence after the program is run, the DATA statement is a little more
convenient. All the numbers are still in the program, so it is not necessary
to reenter the entire sequence. We shall now give a slightly different version
of the program using the INPUT statement. At the same time we shall
modify the program so that it is not necessary to count the numbers
and enter n. The following revision accomplishes this:

5 DIM X(100)

10 INPUT Y$

20 If Y$="E" THEN 50
30 N=N+1

40 X(N)=VAL(YS$)

45 GOTO 10

* This method of sorting numbers is known as bubble sort. It is one of the simplest methods,
but it is not one of the most efficient. If it is necessary to sort many sequences containing
more than 20 to 30 terms, it may be worthwhile to consider one of the more sophisticated
methods that can be found in the literature.
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Problems

Also, line 170 may be deleted.

Line 5 is a DIMension statement. (Since we do not count the entries
in using this program, we simply choose a large number and leave it as
a permanent part of the program.) Line 10 is an INPUT statement. A
string variable is used, so the input may be either a number or a letter.
The numbers of the sequence are inserted one by one in response to the
question marks that appear on the screen. After each numeric entry, line
45 returns the execution to line 10 in preparation for further input. Line
30 keeps a running count of the number of entries. After all the numbers
have been entered, the operator enters E (for “end”) to indicate that the
input is complete. Line 20 then transfers the execution to line 50, where
the sorting process begins. The only thing new is the VALue function
in line 40. This function returns the value of a numerical string; for example,
if Y$=7”, then the expression VAL(Y$) returns the value 7. Using the
same example as before, we enter the sequence

7 359 4 6 2 10 8 1 E

and we obtain the same result.
This technique can also be used with the DATA statement; the
DATA statement handles strings in the same way as the INPUT statement.

1-1. Write programs to evaluate the following functions:

y=5—3x+2x2+ 3x3—x*
p=2x5—x*+3x3+2x2—x—1
y = e3% — x2+ 5x3 — cos x
y=x3nx+x2—3x+2sinx
y=e*cosx+ e Fsinx

o &0 o

Check the programs by obtaining numerical results with x = 2.
Ans. a. 15 b. 77 c. 439.84494 d. 5.3637723 e. —2.9518723
1-2. Write programs for the following functions:

a. y=2x—3,x < —1; y=x2+6x, x2—1
b, y=(x—22x<2 y=0x22
c. y=e*r x <2 y=1x>2

1-3. A bank has the following service charges for checks:
$0.10 per check for the first five checks (1-5)
.09 per check for the next five (6-10)
.08 per check for the next five (1i-15)
.07 per check for each check over 15
Write a program to calculate the total service charge.
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1-4.

1-6.

1-7.

1-8.

Write programs to evaluate the following finite sums. (The analytical
expressions for the sums are given to make it easy to check the
programs.)

B PE2EIE b nr=Z(nk D2+ 1)
b. 124324524 .+(2n-1)2=-;—’(4n2—1)

2
c. 1P+28+3+. .+n3=[§(n+l)]

d 1B+33+5+. . . +@Qn—1p=n22n2—1)

. Write programs to evaluate the following infinite series. (The analyti-

cal expressions for the sums are given to make it easy to check
the programs.)

1 \2 1 \? 1 \2 72 39
<1-2-3) +<2-3~4> +<3-4-5) T T T
1 1 1 1
> 125t oo T T2
1 1 1 3
c. 1 2.2+3.22 m+...~21n2
1 1 1 T
Dl ——t, =
d 3-3 5-32 7-33+ 243
1 12 1-2-3 2 . 3+1
ee. l--+——o—-—o4 | =—In
3 35 357 3 V2
Write a program to evaluate the binomial coefficient
(£>=__L!__
q9/ q'@— )

Numerical results to check the program can be found in almost
any mathematics handbook.

Modify the program for Eq. 1-13 in Sec. 1-5 so that the original
sequence can be extended without repeating the prior calculations.

Write programs for the following recurrence formulas, and use them
to find the first few values of y;.

a Yi+1— 5y + 6y,-,=0 n=1y,=2
Ans. y; =1,2, 4,8, 16,32, . ..
b, Yir1— 2y + 21 =0 y1=3,p2=5
Ans. y; = 3,5, 4, =2, —12, =20, . . .
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1-9.

1-10.

1-11.

1-12.

a. Show that the integral

T2

I, =f x"sin dx n=012, ...
0

satisfies the recurrence formula

-

In+1=(n+1)[(‘g'> "nIn-IJ n>1

b. Also show by elementary integration that I, = I; = 1. Write a
program to evaluate I, I, ... 1

Ans. 11415927, 1.4022033, 1.8040265, 2.3962749, . . .

The Hermite polynomials are considered in advanced calculus. The
first few are

Hy(x)=1

Hy(x)=2x
Hy(x)=4x%2—12
Hy(x)=3x%—12x
Hy(x)=16x*—48x%+ 12

By using the recurrence formula
Hy 4 1(x) — 2xHy (x) +2nHy - 1(x) =0

or otherwise, write a program to evalnate the Hermite polynomials.
Numerical resuits to check the program for values of » from 0
through 4 can easily be obtained from the basic formulas given.
Write a program for the problem of Sec. 1-4 using subscripted varia-
bles instead of a subroutine.

Using the INPUT statement, write a program that sorts numbers
and prints the intermediate sorted sequences after each input entry.



Roots of Equations

2-1. The Method of Iteration

It is often necessary to find the roots of various types of equations. In
this chapter we consider several methods of solving equations. We start
with the method of iteration. To solve the equation

y=flx)=0 (2-1)
We write it in the form
x = ¢(x) 2-2)

It is sometimes possible to solve the equation very easily by first obtaining
a preliminary estimate of x from a rough plot of the function, then substitut-
ing this into the right side of Eq. 2-2. If the procedure is successful, the
resulting value on the left is closer to the true value than the original
estimate. This procedure is repeated as many times as necessary until
the desired accuracy is obtained.

Consider the equation

33 y=x2—2x—4=0 (2-3)
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FIG. 2-1
y
4k /
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A plot of y against x appears in Fig. 2-1. There are various ways in
which Eq. 2-3 can be converted to the form of Eq. 2-2. We write x2 =
4 + 2x. Then

x = (4 + 2x)!2 2-4)

The sketch of Fig. 2-1 suggests x = 3.2 for a rough estimate of the
root. There are several possible ways of programming an iterative evalua-
tion, and we shall consider a few. The simplest possibility is

10 X=3.2
20 X=SQR(4+2*X)
30 PRINT X

To operate the program we enter RUN. The number 3.225 appears on
the screen. At this point we must decide how to proceed to the next
higher approximation. Each subsequent cycle must begin with the last
prior value of x. Therefore we want to return to line 20—not to line
10. We can do so by entering RUN 20. With a few computers, this leads
to the next higher approximation. However, most computers automatically
set all variables equal to zero whenever the RUN statement is entered.
Hence we may expect to obtain the result 2, which is incorrect. Another
approach is to enter GOTO 20. GOTO is a statement normally used in
a program, whereas RUN is a command used in the prompt mode. Most
microcomputers, such as the Apple Ile, the TRS-80, and the Commodore
64, employ a broad form of BASIC in which statements and commands
may be used interchangeably. On any machine of this type, we can solve
the equation by repeatedly entering GOTO 20. Then we obtain the sequence

32 3225 3.2326 3.2350 323574 3.23597 3.23604 3.236058
3.236065 3.2360670 3.2360677 3.2360679

The convergence is not very rapid, but we eventually obtain a high degree
of accuracy. The last resuit agrees io the full number of digits shown
with the exact solution v/5 + 1.

Some computers and microcomputers such as the TI-99/4 maintain
a sharp separation between statements and commands. On a machine of
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this type, GOTO cannot be used in the prompt mode, and the foregoing
solution does not work.

To avoid having to type GOTO 20 repeatedly, we incorporate the
GOTO statement into the program as follows:

10 INPUT X
20 X=SQR(4+2*X)
30 PRINT X
40 GOTO 10

The INPUT statement serves to interrupt the execution; otherwise the
computer would rush ahead grinding out further iterations indefinitely
without waiting for a signal to begin each new cycle. The first time a
question mark appears on the screen, enter the initial estimate 3.2. For
further iterations, press the ENTER key without entering anything. Execu-
tion then proceeds to the next cycle, using the current value of x. This
procedure works with the TRS-80 (all models) and the Commodore 64,
but it does not work with most older Commodores or most other comput-
ers. Most computers require a definite entry in response to a request for
numeric input. To use the foregoing program, the operator has to type
in the last value of x on the screen each time so that it can be used as
the starting value for the next cycle.

The best procedure is to choose some character that does not appear
in the calculations as a dummy input variable, preferably a string. With
this technique, the program becomes

1 REM: ROOTS OF EQUATIONS BY ITERATION

10 X=3.2 Assigns initial estimate of x.
20 PRINT X Prints x.

30 INPUT Q$% Interrupts execution.

40 X=SQR(4+2*X) Calculates new value of x.
50 GOTO 20 Starts next cycle.

We have also added a title and changed the order of the steps so the
initial estimate is printed as the first item of output. Each time a question
mark appears on the screen, the operator proceeds to the next iteration
by pressing the ENTER key without entering anything. Although most
computers do not allow this when numeric input is requested, a null string
(a string consisting of nothing) is a legitimate entry in any version of
BASIC. After satisfactory convergence has been obtained, the execution
is terminated by pressing the BREAK key.

One minor change may make the program a little more convenient
to use with the Commodore 64. When execution is terminated by a BREAK
operation (RUN/STOP and RESTORE), this computer automatically
clears the screen. However, it is possible to terminate execution without
losing the data by entering the line
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FIG. 2-2
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As a second example, consider the equation
1
y=x—-§1nx—~3=0 2-5)
A plot of y against x appears in Fig. 2-2. We write
1
x=§lnx+3 (2-6)

From the sketch of Fig. 2-2, we obtain x = 3.6 for a rough estimate of
the root. Lines 10 and 40 of the program become

10 X=3.6
40 X=LOG(X)/2+3

The operation of the program is the same as in the first example. We
enter RUN to start the execution and then press ENTER for each iteration.

This leads to the sequence

3.6 3.640 3.6461 3.6468 3.64693 3.646943 3.6469446
3.64694486 3.64694490

As a third example, consider the equation
y=tanx —x=0 27
A plot of y against x appears in Fig. 2-3. We write
x = arctan x (2-8)

In the present example it is essential to look carefully at Fig. 2-3 before
writing the program. The desired root is approximately 4.4, which is in
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the third quadrant. Since the inverse trigonometric functions given by
the computer are principal values, it is necessary to increase the arc tangent
by 7. Lines 10 and 40 of the program become

10 X=4.4
40 X=ATN(X)+4*ATN(1)

We obtain the sequence

4.4 4489 4.4932 4.49340 4.493409 4.49340944 4.493409457
4.493409458

The iterative process is depicted graphically in Fig. 2-4. We start
by assuming a value xo. The first iteration gives the result y, = $(x0)
at point P. This becomes the starting value x; for the next cycle. The
new abscissa x; is located by drawing the horizontal and vertical lines
shown. A second iteration leads to the result y, = ¢(x,) at point Q.
This becomes x,. If the procedure is successful, successive iterations con-
verge toward the exact result at point R.

FIG. 2-4
y
Q R
P j
y = dlx) I “:
|
|
|
' l
| I
[ |
! 1
| I X
0 Xo X1
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It is obvious that, given an equation f{x) = 0, the choice of the
equation x = ¢(x) is essentially arbitrary. For example, given Eq. 2-7,
we might have chosen to write x = tan x instead of Eq. 2-8. This choice
has a very strong effect on the convergence of the iterative process. In
fact, an iterative solution of the equation x = tan x diverges. We need
a criterion for convergence, and a very simple sufficient condition is availa-
ble. The iterative process converges provided that the slope
a |
dx

satisfies the inquality |d$/dx|<1 throughout the interval of iteration.
To show this, let k& be the maximum absolute value of the slope on the

interval. Then it is clear that

ha X X
" Yol liﬁk
X — Xo X = Xo
- X — X
Ao 2|£k
X — X1 X — X1
- - X — X
‘_V Yn-1 — n <k
| X = Xp-1 X = Xp-1

where x and p are the true values at point R. By multiplying the middle
and right members of these inequalities, we find that

|x — xn| £ k™|x — X

It follows that, if k¥ < 1, then the error x, — x approaches O as the
number of iterations n becomes large, and the process converges. Conver-
gence is most rapid if the curve y = ¢(x) is approximately horizontal,
that is, if d/dx is close to zero. It is not necessary in practice to check
the value of d¢/dx throughout the interval; the value at the starting
point P usually gives a good indication of convergence, provided that
the initial estimate is not too far from the correct value.

To illustrate the application of these remarks, we return to Eq.
2-5. It can be seen that the iteration based on Eq. 2-6 succeeded because

which satisfies the condition for convergence. An extension of the plot
of Fig. 2-2 shows that there is a second root x =~ .0025. If Eq. 2-6 is
used to evaluate this root by iteration, we have d¢/dx = 200, so the
process may be expected to diverge. This turns out to be true; we obtain
the sequence

0025 .0043 272 2.35
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We now try a different iterative equation, namely

x = 921‘“‘*6
Then

d
¢ =2e2r6 =2 x = (05

dx

so the process may be expected to converge. Lines 10 and 40 of the program
become

10 X=.0025
40 X=EXP(2*X—6)

We obtain the sequence

0025 .0024912 .002491133 .0024911328

The convergence of the iteration process is affected by the choice of the
starting value, but it is difficult to predict this effect in advance. We now
return to Eq. 2-8 and start the evaluation with a very poor guess, say x
= 4.0. The next value will be 4.467, which is somewhat better than the
starting value 4.4 actually used. Hence the worst that can happen is that
the poor initial guess necessitates one extra cycle in the iterativé process.
In some problems, the effect of a poor initial guess is greater, but in
general the simple iteration process is less sensitive to the initial guess
than many other methods.

In the foregoing programs we have obtained results by displaying
the iterative sequence on the screen and deciding by inspection at each
step whether the process has converged satisfactorily. This method is gener-
ally satisfactory for a microcomputer (or for any computer that is used
interactively), but there is an alternative. It is possible to include a segment
in the program to check the error after each iteration and terminate execu-
tion when it falls within some predetermined limit. Unfortunately we do
not know the true error unless we happen to know the exact solution,
in which case an iterative solution is unnecessary. Our next problem is
to find some way around this difficulty. We remark that the difference
of two successive approximations is not an indication of the error; it may
be either greater or smaller than the true error. However, we shall see
that a very good estimate of the error can be derived from three successive
approximations. At the same time we shall consider another problem:
the slow convergence that sometimes occurs with iterative solutions, as,
for example, in the solution of Eq. 2-4. The two problems are closely
related; if we know the approximate error of an evaluation, we can adjust
the result to obtain accelerated convergence.

We begin by referring to Fig. 2-4. Starting with the initial estimate
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X0, We obtained the iterative results yo = x; at point P and y; = x» at
point Q. We then approached the exact solution at point R by repeated
iterations. We now adopt a different procedure. Having located points P
and Q, we pass a straight line through them and extrapolate it to an
intersection with the line y = x. The result will be very close to the
exact point R. The equation of the line through P and Qis

y=yi+rx—x1)
The parameter r, the slope, is given by the equation

Y1 Yo X2 X1
X1 — Xo X1 Xo

r= (2-9a)

The intersection of the line PQ with the line y = x is found by substituting
x for y in the equation for PQ. At the same time we use the fact that
Y1 = Xa. Thus

x=Xxg+ r(x — xy)
By solving for x, we find that
Xg—rXy __ _X2T X1
1
r

X = T Xy

1—r

We now break the last result into the two equations

e:—-—————-—xz-— .;CI (2m9b)
1 —
¥
X=Xp—e (2-9¢)

The parameter e is the estimated error of the last iterative result xa.
Egs. 2-9 are sometimes combined into the single formula

X=Xz _ram x|
X9 2%; + Xo

which is known as Aitken’s extrapolation formula. However, the separate
Egs. 2-9a,b,c are more useful for our purposes.

Egs. 2-9 may be used in either of two ways. We may obtain successive
results by ordinary iteration, using Egs. 2-9a,b to estimate the error at
each step. The other possibility is to use the present resuits as an extrapola-
tion formula to accelerate the convergence of the iterative process. The
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procedure that we shall follow is a combination of the two. We start by
iterating twice; then we estimate the error. If the error is within a specified
limit, the evaluation is completed. Otherwise we extrapolate, iterate twice
from the extrapolated result, and check the error again. This cycle is
repeated as many times as necessary until the error falls within the specified
limit.

The program should include a segment to test successive results
for convergence and terminate execution if the iterative process is diverging.
We have seen that the criterion for convergence is that
‘%% =<1

A program follows for Eq. 2-4. Line 1 is the title. Line 10 contains
the initial value of x, and line 20 assigns this to xo. Lines 30 through
70 constitute a FOR-NEXT loop that performs two iterations. At the
same time the appropriate values are assigned to x; and x,. Line 80 termi-
nates the iteration if two successive results are identical, because this means
that the iteration has already converged to the full accuracy of the com-
puter. Also, the termination forestalls a division by zero in a subsequent
step. Line 90 calculates r. Lines 100 through 120 test whether the iteration
is converging and, if it is not, terminate the execution, printing an appropri-
ate message. Line 130 estimates the error, and line 140 calculates the
extrapolated value of x. Line 150 compares the estimated error with the
allowable limit. If the error is excessive, the cycle is repeated. Line 160
prints the final result. The error of the final result is usually substantially
less than the limit allowed in line 150, because the error of x, is checked
against the allowable limit, whereas the extrapolated value of x is printed.

1 REM: AUTOMATIC ITERATION WITH EXTRAPOLATION
10 X=3.2 Assigns initial estimate of x.
20 X0=X Assigns value of x to x,.

30 FOR J=1TO2
40 X=SQR(4+2*X)

50 X1=X2 Iterates twice.

60 X2=X

70 NEXTJ

80 IF X1=X2 THEN 160 Terminates iteration if x,;=x,.
90 R=(X2—X1)/(X1—X0) Calculates r.

100 IF ABS(R)<1 THEN 130
110 PRINT "THE ITERATION Terminates execution

DIVERGES." if process diverges.

120 END

130 E=(X2—X1)/(1-1/R) Estimates error.

140 X=X2—E Calculates extrapolated x.

150 IF ABS(E)>10A—6 THEN 20 Checks error and repeats
cycle if excessive.
160 PRINT X Prints result.



42 When the RUN command is entered, the computer prints the result
3.236067978. This is identical to the exact value 4/5 + 1 to ten significant
figures, and it is far more accurate than line 150 requires it to be. The
results for intermediate cycles can be obtained by inserting the line

Roots of Equations

25 PRINT X
The resulting sequence appears in the first line of the following figures:

3.2 3.2360766 3.236067978
3.2 3.2326 3.23574

In the second line we show results obtained previously at corresponding
stages of the simple iteration process, remembering that each cycle of

1 1. .. - o coa mmimrmo it fewro téasem bt e Ao
the accelerated process represents two iterations. It can be seen that the

The value of the allowable error in line 150 may be chosen according
to the desired accuracy of the solution and the accuracy of the computer.
The value 1076 is generally satisfactory for most computers. It may be
necessary to allow a somewhat larger error for the TRS-80 because of
this computer’s lower accuracy.

The same program can be applied to other equations; new lines 10
and 40 must be filled in by the user each time. The amendments are
2-6 we obtain the result 3.646944902 and for Eq. 2-8 we get 4.493409458.
Both results are correct to ten significant figures.

2-2. The Newton-Raphson Method

The Newton-Raphson method is also an iterative method of solving an
equation of the type y = f(x) = 0. However, instead of choosing the
equation x = ¢(x) arbitrarily, we adopt a more systematic viewpoint.
Consider the Taylor series

1
y=yo+(x—xo)y6+-2-(x—xo)2yg +-- (2-10)
By taking only two terms on the right and solving for x, we obtain the
equation
X = Xo -+ Yo

’

Yo

For the desired resuit y = 0, this becomes

@11
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We now apply the method to Eq. 2-3. Let
y=x2—-2x—4=0
Then
y'=2x-2
It follows that

x2—2xo—4 x2+4
2x0—2 2xo— 1)

X = xg— @12)

Equation 2-12 is a little more complicated than the analogous Eq. 2-4,
which we used in solving the problem by the simple iteration method.
However, exactly the same programs can be used, except that the equation
line must be changed. It is not necessary to distinguish between x, and
x. We again start with the estimate x = 3.2. The program is

1 REM: ROOTS OF EQUATIONS BY THE NEWTON-
RAPHSON METHOD

10 X=3.2 Assigns initial estimate of x.
20 PRINT X Prints x.

30 INPUT QS$ Interrupts execution.

40 X=(X*X-+4)/2/(X—1) Calculates new value of x.
50 GOTO 20 Starts next cycle.

After the RUN command is entered, the starting estimate 3.2 is displayed.
Successive approximations are obtained by pressing ENTER each time a
question mark appears on the screen. We obtain the sequence

3.2 32364 3.236068 3.23606798

In this example the Newton-Raphson method is much more efficient than

the simple iteration method.
We again consider Eq. 2-5, which is

1
y=x—-~2-lnx—3==0
It is clear that

=1——
Y 2x
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and it follows that

xo—ilnxo—-3

I 5
X = Xo 1 = “""T (2-13)
1—— 2 ——
2Xo Xo

As in Sec. 2-1, we start with the estimate x = 3.6. Lines 10 and 40 of
the program become

10 X=3.6
40 X=(LOG(X)+5)/(2—1/X)

This leads to the sequence
3.6 3.6470 3.64694490
In this example the Newton-Raphson method is again much more efficient
than the simple iteration method.
We again consider Eq. 2-7, which is
y=tanx —x=0
Then
y'=tan? x
and it follows that

tan xo— X X 1
o o_ : o (2-14)
tan2 xo sin? xo tan xo

X = X0

As in Sec. 2-1, we start with the estimate x = 4.4. Lines 10 and 40 of
the program become

10 X=4.4
40 X=X/SIN(X)/SIN(X)—1/TAN(X)

We obtain the sequence

44 4536 4.5019 4.49375 4.4934100 4.493409458

in this example the Newton-Raphson method is not much more efficient
than the simple iteration method.

The Newton-Raphson method is shown graphically in Fig. 2-5. The de-
sired root x is estimated, and the tangent is drawn to the curve y = f(x)



0

I ™

. X -
P . FIGURE 2-5

at that point. The intersection of the tangent with the x axis represents
the solution to Eq. 2-11. The process is repeated as often as necessary
until the desired accuracy is obtained.

Many difficulties can occur in using any numerical method. Some-
times a process is inherently unstable for a particular equation; in other
cases the difficulty is caused by a poor initial estimate of the root. We
rework the last example, this time starting with the poor initial guess
xo = 4.2. Then we obtain the sequence

42 496 556 13.6

It is clear that the process diverges. The stability of the Newton-Raphson
method is more sensitive to the initial error than that of the simple iteration
method; the latter method converged for this problem even with the very
poor initial guess x = 4.0.

The Newton-Raphson method can also be used in conjunction with
the extrapolation program of Sec. 2-1.

2-3. The Secant Method

45

Geometrically the Newton-Raphson method consists of making a first
estimate of x and then obtaining an improved value by drawing the tangent
and extrapolating it to the x axis. A commonly used alternative method
is to choose two points that bracket the exact root, then draw the chord
connecting them and take the intersection with the x axis as the result,
as shown in Fig. 2-6. This is known as the secant method. It is essentially
a form of inverse linear interpolation. The equation is

om0 @-15)
Ye— )1

The process is repeated as many times as desired. The last and next-to-
last previous values of x and y are used as the starting points for each
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new cycle. The program for this method is more complicated than those
used previously, and the method is somewhat less efficient than the Newton-
Raphson method. The major advantage of the method is that the calcula-
tions are entirely automatic; no preliminary calculus and algebra are re-
quired.

The program follows. It is longer than the programs of Secs. 2-1
and 2-2 because each iteration uses four prior values: two of x and two
of y. The earlier programs used only the immediately preceding value of
x. The easiest way to explain the program is to deviate slightly from
ihe order in which ihe lines appear; ihe reasons for some of the earlier
lines will become apparent later. Line 1 is the title. Lines 10 through 50
read the values of the initial estimates x; and x, from the data line,
initialize y;, print x;, assign the value of x, to x, and calculate y. We
use Eq. 2-3, which is

y=x2—2x—4=0

Line 70 calculates the next iteration for x. (Lines 20 and 60 cause this
calculation to be bypassed on the first cycle, since x, cannot be calculated
from xy; it is read from the data line.) It is not necessary to distinguish
between y and y,. Lines 80 through 110 reassign the values of the xs
and y in preparation for the next cycle. (Lines 80 and 90 are skipped
on the first cycle; x; and x, retain their original values.) Line 120 prints
the latest value of x. Line 130 is a dummy INPUT statement. When
this is reached, the computer stops the execution of the program and
waits for the operator to press ENTER to start the next iteration. Line
140 then sends the execution back to line 50 to start the next cycle. After
satisfactory convergence has been obtained, execution is terminated by
pressing the BREAK key. Line 150 is the data line, which contains the
values of x; and x,. From Fig. 2-1, we obtain the estimates x; = 3.2,
x2 = 3.3. Lines 50 and 150 are filled in by the operator each time the
program is applied to a new equation.
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1 REM: ROOTS OF EQUATIONS BY THE SECANT METHOD

10 READ X1,X2 Reads initial estimates.

20 Yi=0 Initializes y;.

30 PRINT X1 Prints x,.

40 X=XI1 Assigns value of x; to x.

50 Y=X*(X--2)—4 Calculates y.

60 IF Y1=0 THEN 100 Bypasses iteration on first cycle.

70 X=(X1*Y—X2+Y1)/(Y—Y1) Calculates new value of x.
80 Xi=X2

90 X2=X Reassignments

100 Yi=Y )

110 X=X2

120 PRINT X Prints latest value of x.
130 INPUT Q5% Interrupts execution.
140 GOTO 50 Returns for next cycle.
150 DATA 3.2, 3.3 Data line for x; and x,.

We obtain the sequence
3.2 3.3 32356 3.236061 3.23606798

The starting values 3.2 and 3.3 appear on the screen immediately after
the RUN command is entered. Subsequent results are obtained by pressing
ENTER each time a question mark appears on the screen.

As a second example, we again use Eq. 2-5, which is

1
y=x—EMx—3=O
From Fig. 2-2 we obtain the starting values x;, = 3.6, x, = 3.7. Lines

50 and 150 of the program are edited to

50 Y=X-LOG(X)/2—3
150 DATA 3.6, 3.7

We obtain the sequence
3.6 3.7 3.64689 3.6469448 3.64694490

As a third example we again use Eq. 2-7, which is
y=tan x — x =0

We start with the values x; = 4.4, x, = 4.6. Then lines 50 and 150 of
the program become

50 Y=TAN(X)—X
150 DATA 44, 4.6
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The results are

44 4.6 4.447 4470 4.4985 4.4928 4.49340 4.4934095
4.493409458

The initial iteration in the secant method as depicted in Fig. 2-6 is
an interpolation. Subsequent results may be either interpolations or exira-
polations. If successive results oscillate about the true value, each iteration
is an interpolation between a high and a low estimate. However, an inspec-
tion of the results of the foregoing examples shows that it is also possible
for results to approach the exact value from one side. In this case the
method is an extrapolation process rather than an interpolation process.

The foregoing examples illustrate the fact that the secant method
converges more slowly than the Newton-Raphson method. However, it
is easier to use because it requires no preliminary calculus and algebra.
The secant method shares one disadvantage with the Newton-Raphson
method; a reasonably good starting estimate is necessary to ensure conver-
gence.

2-4. Roots of Equations by Lagrange Interpolation

In the secant method, each estimate of the root is made by inverse linear
interpolation between the two immediately preceding results. More ranid

convergence is obtained by using all of the prior data in each iteration.
We use inverse Lagrange interpolation. The desired equations are obtained

by interchanging x and y in Egs. 1-16, then setting y = 0. This leads to

X1 X2

X3= + (2-16a)
Y1 Y2
]—— 1—==
Ye Y1
Xa= a2 + T2 + X3 (2-16b)
N N
Ye Y3 Y1 Y3 W1 Y2
X5 = dt + i
O e e R O (e
Y2 Y3 Ya Y1 Vs Y4
i Xt (2-16¢)

e () ()

Clearly these results can be extended indefinitely. The first approximation
is identical to Eq. 2-15 for the secant method, but subsequent approxima-
tions yield increasingly higher orders of accuracy. It can be seen that,
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for the approximation xi+;, there are k terms on the right side of the
equation. We denote the general term of each approximation by u;, where
J runs from 1 through k. Only the last term w of each approximation
is entirely new. Each of the terms u; through u -, is formed by dividing
the corresponding term of the next lower approximation by the factor
(= yi/yx)-

The program follows. Since all the earlier values of u and y are
needed in each cycle, we represent these by subscripted variables. The
variable x is not subscripted. A DIMension statement is not needed because
the process usually converges in a few iterations. The program is set up
to solve Eq. 2-3, which is

y=x2—2x—4=0

The program is organized in the same way as the program for the secant
method in Sec. 2-3. However, it is longer because Eqs. 2-16 are more
complicated than Eq. 2-15. The evaluation of x now occupies the segment
from line 90 through line 160; in the program for the secant method,
this was accomplished in line 70 alone. On the other hand, it is no longer
necessary to reassign the values of all of the xs and ys in preparation
for the next cycle; we simply add 1 to the index k in line 170. The equation
line 60 is filled in by the operator each time the program is run. Ordinary
variables are used, exactly as in the program for the secant method. The
variable x is not subscripted, and y is automatically converted to sub-
scripted form in line 70. To fill in the data line 210, we refer to Fig. 2-1
for the estimates x; = 3.2, x, = 3.3.

1 REM: ROOTS OF EQUATIONS BY LAGRANGE INTERPO-

LATION
10 READ X1,X2 Reads initial estimates.
20 K=1 Initializes k.
30 PRINT X1 Prints x;.
40 X=Xl Assigns value of x; to x.
50 UK)=X Initializes wuy.
60 Y=X*(X—2)—4 Calculates y.
70 Y(K)=Y Converts y to subscripted form.
80 IF K=1 THEN 160 Bypasses iteration on first cycle.
90 S=0 )

100 FOR J=1 TO K—1
110 U)=U)/(1-Y(I)/Y(K))

120 S=S+U()) r Calculates x,.

130 UK)=UXK)/(1-Y(K)/Y(D))

140 NEXT1J

150 X2=S+U(K) J

160 X=X2 Assigns value of x» to x.
170 K=K+1 Adjusts value of k.

180 PRINT X Prints latest result.
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190 INPUT Q$ Interrupts execution.
200 GOTO 50 Returns for next cycle.
210 DATA 3.2,3.3 Data line for x; and x..

To operate the program, lines 60 and 210 are filled in by the user.
The starting values 3.2 and 3.3 appear on the screen immediately after
the RUN command is entered. Subsequent results are obtained by pressing
ENTER each time a question mark appears on the screen. After satisfactory
convergence has been obtained, the execution of the program is terminated
by pressing the BREAK key. We obtain the sequence

3.2 3.3 3.2356 3.2360681 3.23606758

This program runs as it stands on almost any microcomputer in common
use, with one reservation. A few microcomputers, such as the Ti-99/4,
do not allow one character to represeni boih an ordinary variable and a
subscripted variable. On a machine with this limitation, line 70 generates
an error message. This trouble can be corrected either by substituting a
new symbol for the unsubscripted Y in lines 60 and 70 or by deleting
line 70 and writing Y(K) for Y in line 60.
As a second example we again use Eq. 2-5, which is

y=x—4%Ilnx—3=0

As in Sec. 2-3, we use the starting values x; = 3.6, x, = 3.7. Lines 60
and 210 of the program are edited to

60 Y=X—LOG(X)/2—3
210 DATA 3.6, 3.7

We obtain the sequence
3.6 3.7 3.64689 3.64694490

As a third example we again use Eq. 2-7, which is
y=tanx —x=0

As in Sec. 2-3, we start with the values x; = 4.4, xo = 4.6. Then lines
60 and 210 of the program become

60 Y=TAN(X)~X
210 DATA 4.4, 4.6

The results are

44 4.6 4447 45041 4.49398 4.493411 4.49340946



51 The method of finding roots by Lagrange interpolation gives better
convergence than the secant method; in the examples considered here,
the convergence is roughly equivalent to that of the Newton-Raphson
method. Like the secant method, the present method is easy to use; it
requires no preliminary calculus and algebra.

Roots of Equations

2-5. Quadratic Equations

Polynomial equations occur in many applications in science and engineer-
ing. If the roots are real, one of the methods of the preceding sections
may be used. However, it is more convenient to have analytical solutions
that give all the roots directly with no preliminary estimates required,
especially if there are complex roots. Analytical solutions are available
for quadratic, cubic, and quartic equations. These will be considered in
this section and in the two sections that follow.
The general quadratic equation is

ax?+ bx + ¢ =0 2-17)
We assume that the coefficients a, b, and ¢ are real. Also, we exclude
the trivial case @ = 0, which has the single root x = — ¢/b. We solve
the equation by dividing through by a and completing the square. This
leads to
b2 b% ¢
2 — P
X+ a x 4a?2 492 a

The solution is

4l

For the numerical evaluation, it is convenient to make the substitutions

=—— 2-19
€ 2a ( 2)
2
G=<_11> P (2-19b)
2a a a

Then the two roots are

x1=e—+/G (2-20a)
x2=e+~/G (2-20b)
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The character of the roots depends on the value of G, which is known
as the discriminant. If G > 0, the roots are real and their values are
given directly by Egs. 2-20. If G <0, the roots are complex. Since the
computer cannot handle imaginary numbers directly, the solution for this
case must be rewritten as

xi=e+iy/—GC (2-21a)
Xo=e—iv—G (2-21b)

The case G = 0 clearly represents a double real root x; = x; = e.
However, a difficulty can occur in the numerical evaluation of this case.
Sometimes the calculated value of G is some very small positive or negative
number, because of machine error. If it is negative, the execution of the
program will take the wrong branch and arrive at a complex result. Even
if the calculated result is a small positive number, there may be trouble.
The process of extracting a square root magnifies a small error. Suppose
that the value of G should be 0, but the computer calculates the value
10-5. This error may seem trivial, but when the square root is taken, it
becomes .001, which may be excessive for some applications. Difficulties
of this type are more serious in the analyses of cubic and quartic equations
that follow, because the calculations are more intricate. It is desirable to
consider the problem now.

We assume that any very small calculated result should probably
be an exact zero. A correction is necessary if the calculated parameter
governs the choice of branch in an IF-THEN statement or if a root will
be extracted later. Then we specify an interval for which any calculated
result will be set equal to zero. The width of the interval depends on
the computer. A generally safe rule is to consider any result that appears
only in the last two digits of the calculation to be zero. For a typical
microcomputer with nine-digit accuracy before rounding, G should be
set equal to zero whenever its calculated absolute value is less than 1077,

The program follows. Line 1 is the title. Line 2 is the general quadratic
equation. Line 10 generates a blank line between the output for successive
cases. Line 20 calls for the values of the coefficients, and lines 30 through
60 print their values with a heading. Lines 70 and 80 calculate e and
G. Lines 90 and 100 set G equal to zero if its calculated value does not
exceed the stipulated limit. (It does not matter whether we use >or 2
in line 90, because the limit is arbitrary anyhow.) Line 110 generates a
blank line between the coefficients and the roots. Line 120 prints a heading
for the roots. Line 130 tests to see whether the roots are real or complex.
If real, they are printed by lines 140 and 150; if complex, they are printed
by lines 170 and 180. The execution is returned to the beginning by line
160 or 190.

1 REM: ROOTS OF A QUADRATIC EQUATION
2 REM: A*XA2+B*X+C+0

10 PRINT

Generates blank line.



20
30

40
50
60
70
80
90
100
110
120
130
140
150
160
170
180
190

INPUT "ENTER A,B,C,";A,B,C
PRINT "THE COEFFICIENTS OF

THE QUADRATIC EQUATION ARE:"

PRINT "A=":A
PRINT "B=":B

PRINT "C=";C

E=—B/2/A

G=E*E—C/A

IF ABS(G)>10A—7 THEN 110

G=0
PRINT

PRINT "THE TWO ROOTS ARE:"
IF G<0 THEN 170

PRINT E—SQR(G)

PRINT E+SQR(G)

GOTO 10

PRINT E;"+";SQR(—G);"I"

PRINT E;"—";SQR(—G);"I"

GOTO 10

Calls for values of coefficients.

Prints coefficients
with heading.

}Calculates E and G.

Assigns exact 0
if G is small.

Generates blank line.

Prints heading for roots.

Transfers execution if roots are complex.
Calculates and prints
roots if real.

Returns for further input.
Calculates and prints
roots if complex.

Returns for further input.

This program may be used as it stands on almost any microcomputer
in common use, with the exception of one line. The appropriate value of
the constant in line 90 depends on the computer. The number 1077 is
suitable for a typical microcomputer with nine-digit accuracy, such as
the Apple Ile or II Plus or the Commodore 64. For the TRS-80 with
seven-digit accuracy, the constant should be 1075; for the TI-99/4 with
thirteen-digit accuracy, a value of 10711 may be used.

We consider a few examples. For the equation

x2—5x+6=0

we obtain the roots 2 and 3. For the equation

4x2—4x +5=0

we obtain the roots .5 + i and .5 — i. For the equation

x2—6x+9=0

we obtain the double root 3.

2-6. Cubic Equations

Solutions of cubic and quartic equations can be found in many books
on the theory of equations, but they are not in a form suitable for automatic
53 computation. For this reason, we must give the derivations in this section



54

Roots of Equations

and the next in detail. Any reader who is not interested in the theory
may skip the derivations and proceed directly to the programs.
In this section we consider Cardan’s solution of the cubic equation

ax3+ bxt+cx+d=0

(2-22)

We assume that the coefficients a, b, ¢, and d are real. Also, we exclude

the trivial case @ = 0, which is really a quadratic equation

through the equation by a and make the substitutions

xX=u—e

gle

The resulting equation is

ud+3pu+2g=0

where
c
—— o p2
P 3a ¢
d— ce d
A" +e3=55-e(P+6a)

To solve Eq. 2-24, we make the further substitution

u=7)-£
v

This leads to

8 +2qv3 —p3=0

which is a quadratic equation for v3. The solution is
V3 =—q £ (g>+ p)?

We make the substitutions

F=gq%2+ p?
G=(—q+F)1? H=(—qg—VF}?

. We divide

(2-23a,b)

(2-24)

(2-25a)

(2-25b)

(2-26)

(2-27)
(2-28a,b)

The parameter F is known as the cubic discriminant. The roots are

v=G, Go, Gw?, H, Ho, Ho*
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where @ and w? are the complex cube roots of 1 given by the equations

e S S

W =

5 5 (2-29a,b)

By substituting the six values of v into Eq. 2-26 and observing that
GH = —p, we obtain the following three distinct values of u:

u=G+ H, Go+ How? Gow?+ Ho

With the help of Eqgs. 2-29 and 2-23b, it follows that

x1;=G+H=—e (2-30a)
x2=—%(G+H)~e+L\2—/§(G“H) (2-30b)
x3=—%(G+H)_€"£”\2/—§(G“H) (2-30c)

The character of the solution depends on the sign of the cubic discriminant
F. If F > 0, it is clear that the values of G and H given by Egs. 2-28
are real. Then the root x; is real, and the roots x, and X3 are complex.
If F < 0, it can be seen from Eqs. 2-28 that G® and H? are complex
conjugates. The same thing must be true of G and H. Therefore G +
H is real, and G — H is a pure imaginary number. It follows from Egs.
2-30 that all three roots are real. To find the roots, a trigonometric solution
is necessary. We write the parameter G3 in polar form. Thus

G3=—q + in/=F = p(cos ¢ + i sin $)
It follows that

p?=¢q*>— F=—p3

and

q
(—p)¥2

¢ = arccos

It is clear that p is negative when F is negative, so the expression (—p)3/2
will not cause any trouble. Since standard BASIC does not provide an
inverse cosine function, we use the elementary identity

L4 t
arccos ¢ = — — arctan { ————
5 arean ()
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Then

b= —725 + arctan (2-31)

q
By solving for G, remembering that H is the complex conjugate of G,
and substituting the results into Eqgs. 2-30, we arrive at the resuit

+2j
X = 23/=p cos 9__3_12 —e  j=123 2-32)

The numerical evaluation is straighiforward. The parameters p and g are
found from Egs. 2-25, F is found from Eq. 2-27, ¢ is found from Eq.
2-31, and the three roots are given by Eq. 2-32.

If F =0, it follows from Egs. 2-28 that G and H are real and
equal. Then the roots given by Egs. 2-30 are all real, with a double root
x3 = x3. This case will be combined with the real case F < 0. However,
Eq. 2-31 breaks down when F =0. It is clear that the appropriate equation
for this limit is

b= -g (1+sgn q) (2-33)

The analysis of the case F = 0 is ideniical to that of the case F < 0,
except that Eq. 2-33 is used instead of 2-31.

We point out an important feature of Eq. 2-32: The three roots
are in ascending numerical order. To see this we observe that the principal
value of ¢ given by Eq. 2-31 or 2-33 lies in the interval 0 < ¢ < .
Then it follows that

¢+32ﬂs—%ﬁcos¢+4wg

—1 L cos

Therefore x; £ x3 < Xxa.

We now return to the case in which F > 0. Then G and H are
real. The root given in Eq. 2-30a is real, and the roots given in Egs. 2-
30b,c are complex. Equations 2-30 could be used as they stand, but a
revised set of equations leads to a neater program. We introduce the new
parameters

K=(q|+vEFe  L=(4q|—VFP"? (2-34a.b)

Comparison of Egs. 2-28 and 2-34 shows that G and H are related to
K and L as follows:

g<0:G=K, H=L
g>0:G=—L, H=—K
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Equations 2-30 now become

x;=—(K+ L)sgn g — e (2-35a)
1 i3

xy=2 (K + L)sgn g — e+ % (K—L) (2-35b)
1 3

xa=3 (K +L)sgn g — e-—l—z-\/——-(K~—L) (2-35¢)

Equation 2-34b is never used directly; we deduce from Egs. 2-34 and 2-
27 that KL = —p and therefore that

p

L=—=

K

This division is always possible. It breaks down only if K = p = ¢ =
F = 0. Since we are now considering the complex case F > 0, there is
no difficulty. For this reason, we use the parameters K and L instead of

G and H; the last two are sometimes equal to zero. We now rewrite
Egs. 2-35 in the final form in which they will be used in the program:

Xy = <£ - K>sgn qg—e (2-36a)
K
1
Xp = — 3 (x1+ 3e) (2-36b)
_NV3(p
x; = 2 (K + K) (2-36¢)
Xo = X + ix; (2-364)
X3 =X — Ix; (2-36e)

The subscripts » and i stand for real and imaginary, respectively. The
desired results are given by Egs. 2-36a,d,e.

The program follows. Line 1 is the title. Line 2 is the general cubic
equation. Line 10 generates a blank line between successive cases. Line
20 calls for the values of the coefficients. Lines 30 through 70 print the
values of the coefficients, with a heading. Lines 80 through 110 represent
Eqgs. 2-23a, 2-25a, 2-25b, and 2-27. Lines 120 and 130 set F equal to 0
if its calculated absolute value does not exceed some specified limit (Sec.
2-5). Line 140 generates a blank line between the values of the coefficients
and the roots. Line 150 prints a heading for the roots. Line 160 tests
the value of F to see whether the roots are real or complex. If they are
real, they are evaluated and printed by lines 170 through 250. Lines 190,
210, and 230 represent Egs. 2-31, 2-33, and 2-32, respectively. Line 260
returns the execution of the program to the beginning in preparation for
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10
20
30

40
50
60
70
80
90
100
110
120
130
140
i50
160

170
180
190
200
210
220
230
240
250
260
270
280
290
300
310
320
330
340

58 further input. If the roots are complex, they are evaluated and printed

by lines 270 through 330. Lines 280, 290, and 300 represent Eqgs. 2-36a,b,c.
Line 310 prints the value of x;, and lines 320 and 330 print the values

of x5 and x5 according to Egs. 36d,e. Line 340 returns the execution of
the program to the beginning in preparation for further input.

REM: ROOTS OF A CUBIC EQUATION

REM: A¥XA3+B*XA2+C*X+D=0
PRINT

INPUT "ENTER A,B,C,D ";A,B,C,.D
PRINT "THE COEFFICIENTS OF
THE CUBIC EQUATION ARE:"
PRINT "A=";A

PRINT "B=";B
PRINT "C=";C
PRINT "D="D
E=B/3/A
P=C/3/A—E*E

=D/2/A—E*(P-+C/6/A)
F=Q*Q+P*P*P

IF ABS(F)>10A—7 THEN 140
F=0

PRINT

PRINT "THE THREE RGO

IF F>0 THEN 270

PI=4*ATN(1)

IF F=0 THEN 210
PHI=PI/2+ATN(Q/SQR(—F))
GOTO 220
PHI=PI/2*(1+SGN(Q))

FOR J=1 TO 3

X=2*SQR(—P)*COS((PHI+2*J*PI)/3)—E

PRINT X

NEXT J

GOTO 10
K=(ABS(Q)+SQR(F))A(1/3)
X1=(P/K—K)*SGN(Q)—E
XR=—(X1+3*E)/2
XI=(P/K+K)*SQR(3)/2
PRINT X1

PRINT XR;"+";XL;"I"
PRINT XR;"—";XI;"I"
GOTO 10

Generates blank line.
Calls for values of coefficients.

Prints coefficients
with heading.

J

Calculates constants
E, P QF.

Assigns exact 0
if F is small.
Generates blank line.

Prints heading for roots.
Transfers execution if roots
are complex.

N

| Calculates and prints
roots if real.

Returns for further input.

)

Calculates and prints
roots if complex.

£
1

Returns for further input.

This program runs as it stands on almost any microcomputer in common
use. However, the constant in Iine 120 should be adjusted to fit the accuracy



59 of the computer, as discussed in Sec. 2-5. Also, a few computers, such
as the Commodore 64, have a built-in constant for 7. When this feature
is available, it may be used instead of line 170. However, the program
can also be used as it stands.

We consider a few examples. For the equation

Roots of Equations

x3—6x2+ 1lx—6=0

we obtain the roots 1, 2, 3. For the equation
x3—x2—4x—6=0

we obtain the roots 3, —1 + i, —1 — i. For the equation
x3—4x2+5x—2=0

we obtain the roots 1, 1, 2.

This program gives three real roots in ascending order, or one real
root followed by two complex roots. It can easily be seen from the deriva-
tion that this is true in general.

2-7. Quartic Equations

The general fourth-degree algebraic equation is
ax*+bx3+cx2+dx +c=0 (2-37)

We assume that the coefficients are real. Also, we exclude the trivial case
a = 0, which is really a cubic equation. We shall use Ferrari’s method
of solution. The basic concept is similar to that used for the quadratic
equation. We divide through by a, and then complete the square. However,
we shall make one change in the format. Instead of retaining the original
coefficients throughout the analysis, we start by rewriting Eq. 2-37 as

x*+Bx?+ Cx2+Dx+ E=0 (2-38)

It is not possible in the program to distinguish between upper-case and
lower-case characters. However, this will not cause any difficulty, because
the original coefficients are never used after the input. We now complete
the square by adding the expression (rx + 5)? to both sides of Eq. 2-38.
The resulting equation will have the form

B r\?
<x2 + 2% + 5) = (rx + s)? (2-39)

where r, s, and ¢ are real constants whose values will be determined.
By collecting like powers of x and then equating coefficients of correspond-
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ing terms in Egs. 2-38 and 2-39, we arrive at the following set of equations
for r, s, and ¢:

BZ
r2=t-+ 2— - C (2-40a)
Bt D
rs = i 5 (2-40b)
t2
s2= i E (2-40c)

We multiply the first equation by the third and equate the result to the
square of the second. This leads to the following equation for :

3 — Ct?+ (BD — 4E)t + 4CE — D*— B*E=0 (2-41)

The substitution

C
=u +§ (2-42)
leads to
ud+3pu +2g=0 (2-43)
where
1 C?
p=- (BD - 4E> (2-44a)
3 3
C 2 1
=% BD 3 C2+8E )~ > (B2E — D?) (2-44b)

Equation 2-43 is identical to Eq. 2-24, which has already been solved.
We also need the cubic discriminant F. This has been given in Eq. 2-27
as

F=gq%+p3 (2-45)

With u known, the values of ¢, r, and s follow from Eqgs. 2-42 and 2-
40. Equation 2-39 breaks down into the two quadratic equations

B t

x2+(5+r)x+§+s=0 (2-46)
B 3

x2+(§-r>x+5-—s=0 (2-47)

which can easily be solved for x.
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In principle we now have all the elements of the solution of Eq. 2-
37. However, some further work is necessary before a numerical evaluation
can be carried out. The numerical analysis starts with the evaluation of
t. Since Eq. 2-43 for u is identical to 2-24, this evaluation is almost exactly
the same as that given previously for the cubic equation, except that Egs.
2-44 for p and g take the place of 2-25. However, we now need only
one root. To choose the appropriate root, we observe that, if we expect
to obtain useful results from the quadratic Egs. 2-46 and 2-47, the parame-
ters r, s, and ¢ must be real. If F > 0, there is only one real value of t.
This is

C
t= <-§ - K> sgn q + 3 (2-48)

which is adapted from Eq. 2-36a by using 2-42 instead of 2-23b. If F <
0, there are three real values of u and ¢, but not all of them necessarily
correspond to real values of r and s.* Inspection of Egs. 2-40 shows
that the largest value of ¢ is the one that we need. Then we have

t = 2+/—p cos % +£; (2-49)
which is adapted from Eq. 2-32 with j =1

With ¢ known, r is found from Eq. 2-40a. The sign of r is immaterial;
a reversal of sign would merely interchange Egs. 2-46 and 2-47. We choose
the positive sign. Some care must be taken in evaluating s. With ¢ and r
known, either Eq. 2-40b or 2-40c can be used to find s. However, neither
equation alone is entirely adequate. The sign of s must be consistent with
the sign of r, but Eq. 2-40c gives only the magnitude. Equation 2-40b
gives the magnitude and the sign, but it breaks down when r = 0. We
use Eq. 2-40b if » % 0 and 2-40c if r = 0. (If r = 0, the sign of s is
immaterial.)

With r, s, and t known, the four required values of x are obtained
from the quadratic Egs. 2-46 and 2-47. Actually we use the equation

x2+2mx+n=0 (2-50)

where the coefficients m and n are chosen to fit Eqs. 2-46 and 2-47.
For Eq. 2-46, it is clear that

* The qui rtic Eq. 2-38 can be decomposed into the quadratic Egs. 2-46 and 2-47 in three
ways. Let the four roots be x;, x2, x3, and x,. Then we may have x, paired with x, and
X3 with x4, or x; with x5 and x, with x4, or x; with x4 and x, with x;. Each combination
corresponds to one of the three roots of the cubic Eq. 2-41. It is possible for Eq. 2-41 to
have three real roots at the same time that the quartic 2-37 or 2-38 has complex roots. In
this case only one of the three values of +—the one that groups the complex roots of the
quartic into conjugate pairs—will lead to real coefficients in the quadratic Eqs. 2-46 and
2-47, and thus to a workable solution.
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B

m=24L =1y
Y n 5 s (2-51a,b)

and for Eq. 2-47
n=-—-—= (2-52a,b)

The solution of Sec. 2-5 is used. Also, we need the quadratic discriminant

G=m?—n (2-53)

For quadratic and cubic equations, we obtained exact zeros of the
discriminant by using the IF-THEN statement to set it equal to O if its
calculated value fell within some specified interval. For a quartic equation,
we have the two discriminants F and G. The latter appears twice in the
program. Zero values of r* and s? are also critical, because the square
roots of these are used. Instead of using the IF-THEN statement five
times to set these parameters equal to O if their calculated values fall
within some specified interval, we shall adopt a slightly neater method.
This is based on the fact that a computer cannot handle numbers with
very large or very small absolute values. The occurrence of a very large
number (an overflow) causes a computer to dispiay an error message aind
stop running. The occurrence of a very small number (an underflow) does
not generate an error message; the number is set equal to zero and the
execution proceeds. We may take advantage of this by intentionally creating
an underflow to get rid of a small error term. The procedure is to first
divide the calculated result by some very large number—say Z-—and then
multiply it by the same number. If the calculated result is very small,
the final result will be exactly zero. Otherwise the original value will be
recovered. The appropriate value of Z depends on the computer.

Consider a typical Microsoft computer such as the Apple Ile or
the Commodore 64. The acceptable interval for the absolute value of a
number runs from approximately 1073 to 1038, The accuracy is approxi-
mately nine digits. To eliminate a result that differs from O only in the
last two digits, we set Z = 10%. For the TRS-80, with the same range
but only seven-digit accuracy, we set Z = 10%. For the T1-99/4, with a
range of 107128 to 10'%8 and thirteen-digit accuracy, we set Z = 1017,

The program follows. Line 1 is the title. Line 2 is the general quartic
equation. Line 10 generates a blank line between successive cases. Line
20 calls for the values of the coefficients of Eq. 2-37. Lines 30 through
80 print the coefficients, with a heading. Lines 90 through 120 calculate
the coefficients of the modified Eq. 2-38. Line 130 assigns a value to the
parameter Z. This is used to create an underflow when an exact zero
result is required, as discussed. Lines 140, 150, and 160 represent Eas
2-44a,b and 2-45. Line 170 generates a blank line between the values of
the coefficients and the roots. Line 180 prints a heading for the roots.
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Lines 190 through 260 calculate t; this segment is similar to the cubic
program of Sec. 2-6. Lines 270 through 310 calculate r and s, using Egs.
2-40. Lines 320 and 330 calculate the coefficients m and n, using Egs.
2-51. Lines 350 and 360 calculate and test the quadratic discriminant
G. If the roots are real, they are calculated and printed by lines 410
and 420. If they are complex, lines 370 through 390 switch the analysis
from Eq. 2-46 to Eq. 2-47. In this way the real roots (if any) are obtained
first. If the new roots are also complex, line 400 transfers the execution
to lines 440 and 450, which print them.

In the programs for quadratic equations and cubic equations, all
of the roots were found at once. In this program only two roots are found
at one time. Hence it is necessary to count the roots as the execution
proceeds and to end the calculation when the number reaches four. This
is done in lines 340, 460, and 470. Line 480 returns the execution of the
program to the beginning in preparation for further input. With any com-
puter that has an ELSE statement, lines 470 and 480 may be combined.

1 REM: ROOTS OF A QUARTIC EQUATION
2 REM: A*¥*XA4+B*XA3+-C*XA2+D*X+E=0

10 PRINT Generates blank line.

20 INPUT "ENTER A,B,CD,E "; Calls for values
A,B,C,D,E } of coefficients.

30 PRINT "THE COEFFICIENTS OF ]

THE QUARTIC EQUATION ARE:"
40 PRINT "A=";A
50 PRINT "B=";B
60 PRINT "C=";C
70 PRINT "D=";D

\ Prints coefficients
with heading.

80 PRINT "E="E J

90 B=B/A )
100 C=C/A Calculates coefficients
110 D=D/A J of Eq. 2-38.
120 E=E/A

130 Z=(See text.)
140 P=(B*D—C*C/3—4*E)/3
150 Q=C*(B*D—2*C*C/9+8*E)/6

Assigns value of underflow parameter.

l Calculates P, Q, F.

—(B*B*E-+D*D)/2
160 F=(Q*Q-+P*P*P)/Z*Z J
170 PRINT Generates blank line.
180 PRINT "THE FOUR ROOTS ARE:" )

190 ON SGN(F)+2 GOTO 200,220,250

200
210
220
230
240
250
260

PHI=2*ATN(1)+ATN(Q/SQR(—F))
GOTO 230

PHI=2*ATN(1) *(1+SGN(Q))
T=2*SQR(—P)*COS(PHI/3)+C/3
GOTO 270
K=(ABS(Q)+SQR(F))A(1/3)
T=(P/K—K)*SGN(Q)+C/3

+ Solves cubic equation for t.




Calculates r and s.

| P :
J‘ Calcuiates m ana n.

Initializes number of roots.
Calculates quadratic discriminant.
Transfers execution if roots are real.
Switches coefficients
of quadratic equation.
Calculates quadratic discriminant.
Transfers execution if roots are complex.
Calculates and prints
real roots.
Transfers execution.
Calculates and prints
complex roots.
Counts roots.
Returns for remaining roots.
Returns for further input.

A e ta e i e ale i Lallaiiden e dnldal
A IEW TeSuUllsS ai€ giveil i uiC 10nowililg tauvie.

e
—-12
—4
—6
—15
25

-3, 1, —1%2i
12§, —2%i

It can be shown that this program always gives real roots in ascending
order, followed by complex roots.

Solve equations 2-1 through 2-6 numerically.

270 R=SQR((T+B*B/4—C)/Z*Z)
280 IF R=0 THEN 310
290 S=(B*T/2—D)/2/R
300 GOTO 320
310 S=SQR((T*T/4—E)/Z*Z)
320 M=B/4+R/2
330 N=T/2+S
340 J=0
350 G=(M*M—N)/Z*Z
360 IF G>=0 THEN 410
370 M=B/2—M
380 =T—N
390 G=(M*M—N)/Z*Z
400 IF G<0 THEN 440
410 PRINT —M—SQR(G)
420 PRINT —M-+SQR(G)
430 GOTO 460
440 PRINT —M;"+";SQR(—G);"I"
450 PRINT —M;"—";SQR(—G);"I"
460 J=J+2
470 1IF J<4 THEN 370
480 GOTO 10
a b c d
1 —4 -1 16
1 -2 =3 8
2 5 —8 —17
1 6 4
1 2 2 10
Problems
2. x+Inx=35
2-2. 3x —4sin x =2
2-3.
2-4, et = (5§ — x)3
2-5. x = 2 8in x
64 2-6. cosh x = 2 cos x

e f+sinx—5x+2=0
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2-7. Find the smallest positive nonzero root of the equation tan x =
2x.
2-8. Use the Newton-Raphson method to evaluate /5.
2-9. Use the Newton-Raphson method to evaluate {/5.
2-10. Verify the solutions to the three quadratic equations given at the
end of Sec. 2-5.

2-11. Verify the solutions to the three cubic equations given at the end
of Sec. 2-6.

2-12. Solve the following equations:

a. x3—4x2+3x+1=0
b. x3—18.1x —34.8=0
c. x¥+2x2+10x—20=0

2-13. It is shown in the theory of elasticity that the principal stresses in
a three-dimensional body are given by the three roots of the equation

o= (0 + oy + 02)0% +(0z0y +Ooyo; o0 —TE — T, — T4 )0
~(Oz0y0: +2Tay Tye Tor — 02T, — OyT2, — 0:72,) =0

where oz, 0y, and o, are the tensile stresses in the x, y, and z directions,
respectively, and the 7s are the shear stresses. Modify the program of
Sec. 2-6 to solve this problem directly, using o, oy, 02, Ty, Tyz, and
T,z as input. Check the program for the following values:

o =100 oy =—80 o, =150
Ty = 20 Tyz = 30 Toe =—10

2-14. Verify the solutions to the five quartic equations given at the end
of Sec. 2-7.

2-15. Solve the following equations:

xt—x%—3x24+2x+2=0
xt+x3—Tx2—4x+6=0
x4—3x3+6x2—3x—5=0
x4—5x3+ 11x2—14x+4=0

e o

2-16. Solve the equation:
x6— x5+ x4~ Tx3—8x2—34x —24=0



Some Higher
Transcendental Functions

The elementary trigonometric, exponential, and logarithmic functions are
provided with the computer. When more advanced functions are required,
it is necessary to write programs for them. In this chapter we shall develop
programs for a number of commonly occurring functions.

3-1. The Sine Integral and the Cosine Integral

66

The sine integral Si(x) is defined by the equation
Tgin ¢

Si(x) = f §Hl7 dt G-1)
0

By expanding the integrand into an infinite series and integrating term
by term, we find that

X3 x5 x7
[ x = _— - — ~’)
Silx)=x 3.3§45'5! 7-7!+”' (3-2)
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There are several possible nested forms of this equation. The most conve-
nient one for our purpose is

Si(x) = x<1 —5 23(% e 25@ — 27(% —.. )))) (3-3)

The number of terms n needed to obtain satisfactory convergence depends
on the value of x. It is desirable to include an automatic provision in
the program to determine the appropriate value of n, rather than try
several values manually for each value of x. We use the equation

n=1Int(1.5x + 6) (3-4)

This nomenclature means that the result on the right side of the equation
is truncated to the greatest integer that does not exceed the value of the
expression in parentheses. Equation 3-4 guarantees that the error due to
the neglect of higher-order terms in the series will not affect the first ten
significant figures of the result. (This equation is obtained by trial and
error, trying various values of n until further increases no longer affect
the result.) The same criterion of accuracy is followed throughout this
chapter. This, of course, does not guarantee that the results will be accurate
to ten significant figures. The accuracy of the results depends on the accu-
racy of the computer as well as on the number of terms retained in the
series.

The program follows. Line 1 is the title. Line 10 generates a blank
line between successive sets of data. Line 20 calls for the input x, using
a prompting message, and prints the response on the screen. Line 30
calculates n, the required number of terms of the series, using Eq. 3-4.
Line 40 calculates the number at the extreme right of Eq. 3-3, and the
next three lines constitute a FOR-NEXT loop that calculates S, the sum
of the nested series, proceeding from right to left and ending with the 1
inside the left parenthesis. Line 80 calculates and prints the final result,
Si(x). Line 90 is optional; if results are required for a number of values
of x, this line makes it possible to obtain them without typing RUN
each time. The execution of the program is terminated by pressing the
BREAK key.

1 REM: SINE INTEGRAL

10 PRINT Generates blank line.

20 INPUT "X=";X Calls for value of x.

30 N=INT(1.5¥X-+6) Calculates n.

40 S=1/(2*N—1) Initializes S.

50 FOR J=2*N—3 TO 1 STEP —2

60 S=1/J-X*X/(J+1)/(J+2)*S }Calculates S.

70 NEXTJ

80 PRINT "SI(X)=";X*S Calculates and prints result.

90 GOTO 10 Returns for new input.
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Accurate numerical results from reference 1 appear in the following table:

X Si(x) x Si(x) x Si(x)
0 0.000000000 4 1.758203139 8 1.57418 6822
1 0946083070 5 1.54993 1245 9 1.66504 0076
2 1.605412977 6 1424687551 10 1.65834 7594
3 7

1.84865 2528

1.45459 6614

Results obtained by running the program on the TI-99/4 microcomputer
are identical to those shown. Other computers give essentially the same
results, although the last few digits may be lost, depending on the accuracy
of the model used. These remarks apply to all the programs of this chapter,
unless otherwise noted.

The cosine integral (Ci(x) is defined by the equation

: ® cos ¢t
Ci{x) = *-j . dt 3-5)
X

In this case the series expansion is not elementary. It can be shown that*

x2 x* x8

Cl(x)=y+lnx—2_2!+4.4g_6-6!+' o

(3-6)

where 7 is Euler’s constant. The nested form of this equation is

N _oxrl o x2 1 x? /1
Ci(x)=vy+In x 1_2\2 3.4\4 5-6\6 ))) 3-7)

The required number of terms is again given by Eq. 3-4.
The program follows. It corresponds very closely to the foregoing
program for the sine integral.

1 REM: COSINE INTEGRAL

10 PRINT Generates blank line.
20 INPUT "X=";X Calls for value of x.
30 N=INT(1.5*X+6) Calculates n.

40 S=1/2/N Initializes S.

50 FOR J=2*N—2 TO 2 STEP —2

60 S=1/J-X*X/(J+1)/(J+2)*S }Calculates S.

70 NEXTJ

80 CI=.5772156649+LOG(X)—X*X*S/2 Calculates result.

90 PRINT "CI(X)=";CI Prints result.

100 GOTO 10 Returns for new input.

* All the algorithms used in this chapter can be found in reference 1, unless other references
are cited. Derivations can be found in reference 3.
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Accurate numerical results from reference 1 appear in the following table.
Results from the program are identical to those shown.

Ci(x) x Ci(x) x Ci(x)
3374039229 5 —.19002 97497 9 .05534 75313
4229808288 6 —.0680572439 10 —.04545 64330
1196297860 7 07669 52785

—.14098 16979 8 .12243 38825

ESRCI S e

A remark about the utility of the two foregoing programs may be
of interest. If we need a few values of Si(x) or Ci(x), it is easier to look
them up in a handbook than to write a program. However, integrals of
this type sometimes appear as intermediate steps in more complicated
analyses. In this case it is not convenient to interrupt the execution, look
up the value of the required function, and enter it into the computer for
each run. Programs of the type given here are used as program segments
or subroutines in bigger programs. The same remark applies to all the
programs of this chapter.

3-2. The Exponential Integrals

The exponential integral Ei(x) is defined by the equation

e ~1

Ei(x) = — J' ft— dt (3-8)

—X
The series expansion is

X x2 x3
[— +_._...
+ 3-3!

Ei(x)=y+1n x + NT ﬁ

+... (3-9)

In nested form, this becomes

Ei(x)='y+lnx+x(1+-§<%+-§<%+§<i+...)))) (3-10)

The equation for the number of terms n is
n=Int(2.3x + 12)

The program follows. Everything except line 100 corresponds closely to
the program for the cosine integral in Sec. 3-1. Line 100 prints the value
of xe~* Ei(x), which is needed to check the program results against accu-
rate results from reference 1. After it has been verified that the program
is running properly, this line may be deleted.
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1 REM: EXPONENTIAL INTEGRAL

10 PRINT Generates blank line.
20 INPUT "X=";X Calis for value of x.
30 N=INT(2.3*X+12) Calculates n.
40 S=1/N Initializes S.
50 FOR J=N--1TO 1 STEP —1 3
60 S=1/J+X/(J+1)*S }Calculates S.
70 NEXTJ
80 EI=.5772156649 + LOG(X)+X*S Calculates EI(x).
90 PRINT "EI(X)=";EI
100 PRINT "XEXP(—X)EL(X)="; }Prints results.
X/EXP(O*EL
110 GOTO 10 Returns for new input.
Accurate numerical results from reference 1 appear in the following table.

1 i 1
Results from the program agree with those shown.

x  xe TEi(x) x  xe %Ei(x) x  xe *Ei(x)
1 0.69717 4883 5 1.35383 1278 9 1.152759209
2 1.34096 5420 6 1.27888 3860 10 1.13147 0205
3 1.483729204 7 1.22240 8053
4 1.438208032 8 1.18184 7987
The exponential integral E;(x) is defined by the equation
® ot
Ei(x) =f ey dt (3-12)
I

This integral is more difficult to evaluate numerically than the ones that
we have considered previously. The most commonly used series expansion
is

x x2 x3
El(x)——’y—lnx+'l—.“'1“!--2—5‘!+ﬁ—. . (3-13)

which is obtained from the integral representation

1—et
t

El(x)=-'y—lnx+J‘ dt
0

It is difficult to obtain accurate results from Eq. 3-13 unless x is small,
because E,(x) approaches zero rapidly as x becomes large. At the same
time the individual terms of the series become numerically large and alter-
nately positive and negative. Hence the desired result is the small difference
of large terms, and is subject to a large roundoff error. The best remedy

is to rewrite the integral representation as

I o — pr—!
El(x)=~y—}nx+e‘1}( 5 dt
0
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This generates the series
Ex(x)=—vy—Inx+ e *(ayx + asx2+ azgx3+. . .) (3-14)
The coefficients are given by the equation

1 1 1 1
aj=';<1+5+§+. . .+"j> (3-15)
J J

This can be evaluated as it stands, but a result with a slightly smaller
roundoff error is obtained by a different procedure. We write

am 69

The first few cs are
;=1 ca=13 cz3=11 cs =350 cs =274
It is easy to show that the cs are given by the recurrence relations

¢ =Jj¢j-1+ bj-1 co=0 (3-16b)
bj = j1=jbj-1 (3-16¢c)

When we try to write the series in Eq. 3-14 in nested form, a difficulty
arises. A nested series is evaluated from right to left. Therefore we need
Qn, An-1, Gu-2 . . . in that order. However, Egs. 3-16 give the ¢s and
as in ascending order, starting with ¢,. It is desirable to adhere to the
nested format, since this is more efficient than direct summation. We rewrite
Eq. 3-14 as

Exx)=—7—lnx+ x"e‘f(an ot gy )
x x
This can be written in nested form as

1
E{x)=—y—Inx + xm%e~* (an —l»-)l-c (an_l +; (a,,_2+. . ))) 3-17)

The number of terms required for convergence is
n =Int(2.5x + 16) (3-18)

Equation 3-14, as well as Eq. 3-17, which is derived from it, is less subject
to roundoff error than Eq. 3-13 because all of the terms of the series are
positive. However, there is still some difficulty because y + In x is nearly
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equal to x"e~*(. . .) in Eq. 3-17. The accuracy of the results depends
on the computer used. A program based on Eq. 3-17 works well with
the TI-99/4; with other models the errors are greater.

The program follows. Line 1 is the title. Line 10 generates a blank
line between successive sets of data. Line 20 calls for the input x, using
a prompting message, and prints the response on the screen. Line 30
calculates n, the required number of terms of the series, using Eq. 3-18.
Lines 40 through 120 evaluate the nested series in Eq. 3-17, and line
130 calculates E;x. Line 140 prints the result. Line 150 prints the value
of xe?E;(x). This is needed to check the program results against accurate
values from reference 1. Line 160 returns the execution of the program
to the beginning in preparation for further input.

1 REM: EXPONENTIAL INTEGRAL E1(X)

10 PRINT Generates blank line.
20 INPUT "X=";X Calls for value of x.
30 N=INT(2.5*X-+16) Calculates n.
40 S=0
50 B=l } Initializes variables.
60 C=0
70 FOR J=1 TON
80 C=J*C+B
?(.) B:Jj 1.3“ — Calculates S.
100 =C/B/D
110 S=A+S/X
120 NEXT J .
130 E1=—5772156649015
—LOG(X)+XAN/EXP(X)*S } Calculates E1(X).
140 PRINT "EI(X)=";E1
150 PRINT "XEXP(X)E1(X)="; } Prints results.
X*EXP(X)*El
160 GOTO 10 Returns for new input.

Results obtained by running the program on the TI-99/4 and the Apple
Ile are shown in the following table:

xeZE (x)
Apple Ile
x Ref. 1 TI-99/4 Apple Ile (modified prg.)
1 .59634 7362 .59634 7362 .59634 7364 .59634 7368
2 72265 7234 72265 7234 72265 7221 72265 7221
3 .78625 1221 78625 1221 .78625 1435 78625 1234
4 .82538 2600 .82538 2600 .82538 2415 .82538 2415
5 .85211 0880 .85211 0881 852114991 85211 1274
6 87160 5775 .87160 5768 .87163 4899 .87161 8652
7 .88648 7675 .88648 7683 .88666 3229 .88660 4108
8 .89823 7113 .89823 7189 overflow .89826 9859
9 90775 7602 90775 7441 “ .90944 4793
10 91563 3339 91563 2694 * 91525 9189
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Results found with the Commodore 64 are identical to those found with
the Apple Ile. Accurate results from reference 1 are shown for comparison.
Two difficulties are apparent. Even though we have taken precautions to
minimize roundoff error, this trouble has not been entirely eliminated.
With the TI-99/4, which has thirteen-digit accuracy, results are very good.
The error increases as x increases, but it is never large in the interval
0 < x £ 10. For the Apple Ile, with nine-digit accuracy, the error is
greater. Also, the calculations with the Apple break down when x > 7
because of an overflow. Every computer has some upper and lower limits
to the size of number that it can handle. On the TI-99/4, the range is
from 107128 to 10?8, With computers such as the Apple Ile, Commodore
64 and TRS-80 that use Microsoft BASIC, the limits are 1038 and 109,
The parameters a, b, and ¢ are outside these limits when x > 7; a is
very small, while b and ¢ are very large. Also x™ is large. The overflow
can easily be corrected by amending two lines of the program as follows:

50 B=(X/2)A—N
130 B1=—5772156649015—~LOG(X)+2AN/EXP(X)*S

Results found by running the amended program on the Apple Ile and
the Commodore 64 appear in the last column of the preceding table.
The accuracy, although not high, is good enough for many applications.
The foregoing program does not give satisfactory results on the
TRS-80 unless x is small (say x < 4) because of the lower accuracy of
this computer. However, a partial remedy can be found by a careful study
of the performance characteristics of this machine. For ordinary arithmetic,
the results are accurate to seven significant figures. For scientific functions
the accuracy is lower and depends on the specific operation performed.
(The TRS-80 has a double precision mode that gives results accurate to
17 significant figures. However, this applies only to ordinary arithmetic
and not to scientific functions.) For the LOG and EXP functions, the
accuracy is only slightly lower than that of ordinary arithmetic, but for
exponentiation it is much poorer. Thus the result of using XAN is much
poorer than the result obtained by carrying out the multiplication X*X*X*
. . to n factors. We therefore modify the original program to avoid
the use of exponentiation. The appropriate changes are:

65 P=1
115 P=X*P
130 E1=—.5772157-LOG(X)+P/EXP(X)*S

With this amendment, the TRS-80 gives results accurate to three significant
figures provided that x < 7. For larger values of the argument, an overflow
occurs. Although this can be corrected, the results are still unsatisfactory
if x> 7.

With all the preceding programs for E;(x), the accuracy deteriorates
as x becomes large. We now consider an approximate evaluation that is



74  very good for large values of x and does not require a highly accurate
computer. We start with the integral of Eq. (3-12) and integrate repeatedly

Some Higher . :
Transcendental by parts. In this way we obtain the results
Functions o -t
e
E.(x) =f —dt

z
e = * gt

=— — | —dt
x z 12
e"I e“‘I o0 e"t

= -t 1:27 —dt
x X2 z 3
e e T e~ w© 5t

= =t 1:2—=—1-2-3] —dt
x x2 x3 s

oo 2 3
El(x)=f-;(1——+-~~—-+. : )

The series in parentheses is known as an asymptotic series. Proceeding
from left to right, the first few terms decrease in absolute value. Later
terms increase. The series clearly diverges, since the ratios of successive
terms approach infinity as we proceed toward the right. Nevertheless it
is possible to obtain useful results for large values of x. It is clear from
the integrations by parts that the signs alternate and that the sign of the
remainder is always opposite to that of the last term considered. It follows
that the true value of the series is bounded by any two successive partial
sums. If x is large, a good approximation can be obtained by terminating
the series with the smallest term, using only half of this term. The result
is midway between the narrowest possible upper and lower bounds. In
nested form, the series becomes

o= (1 (202 (- ()

The program follows:

10 PRINT Generates blank line.
20 INPUT "X=";X Calls for value of x.
30 S=.5 Initializes S.

40 FOR J=INT(X) TO 1 STEP —1

50 S=1—J/X*S } Calculates S.

60 NEXTJ

70 PRINT "E1(X)=";S/X/EXP(X)
80 PRINT "XEXPC)HE1(X)=";S
90 GOTO 10 Returns for new input.

} Prints results.
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Some Higher x 7 8 9 10
Transcendental  xezp (x) 88638  .89827  .907745  .915638
Functions

These results are inferior to those given by the first program with
the TI-99/4, but better than those found with the Apple 1le and the
Commodore 64, and far better than those that can be found with the
TRS-80. Other methods of evaluation are also possible. Convenient formu-
las have been obtained for many functions by fitting simple algebraic expres-
sions to the exact results. An evaluation of this type for E,(x) is given
in Prob. 3-2. An evaluation using numerical integration is given in Chapter
4, Prob. 4-21. This is more accurate than any of the evaluations given
here, although it is less convenient to use.

3-3. The Error Function

The error function erf x is defined by the equation

erf x = e~ dt (3-20)

2 J‘f
Vlo
By expanding the integrand into an infinite series and integrating term
by term, we find that

2 x2 x4 xS x8
fx=—rx(1— - — 3-21
e ﬁx< 3t 7.3 94 ) (3-21)

In nested form, this becomes

-Gyl E S G5 ) e

The number of terms necessary for convergence is
n = Int(14x + 3) (3-23)

The program follows. Line 1 is the title. Line 10 generates a blank line
between successive sets of data. Line 20 calls for the input x, using an
input prompting message, and prints the response on the screen. Line
30 calculates n, the required number of terms of the series, using Eq.
3-23. Lines 40 through 70 evaluate S, the sum of the nested series in
Eq. 3-22. Line 80 completes the evaluation of erf x, and line 90 prints
the result. Line 100 returns the execution of the program to the beginning
in preparation for further input.
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Functions 30

40
50
60
70
80
90
100

REM: ERROR FUNCTION
PRINT

INPUT "X=";X
N=INT(14%X + 3)
S=1/(2%N—1)

FOR J=N—1 TO 1 STEP —1
S=1/(2+J—1)—X*X/I*S
NEXT J
ERF=X/SQR(ATN(1))*S
PRINT "ERF(X)=":ERF
GOTO 10

Generates blank line.
Calls for value of x.
Calculates n.
Initializes S.

]

}Calculates S.

Calculates result.
Prints result.
Returns for new input.

Accurate numerical results from reference 9 appear in the following table:

erf x x erf x
.00000 00000 2.0 .99532 22650
.52049 98778 2.5  .99959 30480
.84270 07929 3.0 .99997 79095
96610 51465 3.5 .99999 92569

Results from the program are identical to those shown with the exception
of some slight discrepancies in the last digit. For larger values of x, erf
x is usually taken as 1. An alternate program is given in Prob. 3-4.

3-4. Complete Ellipitic Integrals

The complete elliptic integral of the first kind K(k) is defined by the
equation

do

[z
ko) _fo (1 — k2sinZ 9)1/2

The best way to evaluate this integral numerically is to use the infinite
product (reference 4):

K(k)=-725(1 + k) + ka)(1+ kg) - .

The ks are given by the recurrence relation

PR k4 Bl
14+ +v1— k2, °

This can be simplified to either

—/1— k7 \2
kj:<_1__,__l___1_'l> ko=k

ki1

(3-24)

(3-25)

(3-26)

(3-27)
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or

_ ki1 2 _
kJ—<1+ m) ko= k (3-28)

The last form is preferable because it does not break down when k = 0.
Results converge to ten significant figures provided that k%2 < .99, and
five terms are taken in the infinite product of Eq. 3-25.

The program follows. Line 1 is the title. Line 10 generates a blank
line between successive sets of data. Line 20 calls for the input k, using
an input prompting message, and prints the response on the screen. Lines
30 through 80 calculate the product P on the right side of Eq. 3-25.
The parameter Q in the program is k; of Eq. 3-28. Line 90 prints the
result, and line 100 returns the execution of the program to the beginning
in preparation for further input.

1 REM: COMPLETE ELLIPTIC INTEGRAL K(K)

10 PRINT Generates blank line.
20 INPUT "K=";K Calls for value of k.
30 Q=K Initializes Q.
40 P=2*ATN(1) Initializes P.

50 FORJ=1TOS5

60 Q=(Q/(1+SQR(1-Q*Q)NA2
70 P=(1+Q)*P Calculates P.

80 NEXT]J
90 PRINT "K(K)=";P Prints result.
100 GOTO 10 Returns for new input.

Accurate numerical results from reference 1 are given in the table at the
end of this section. Results from the program are identical to those shown.
The integral of Eq. (3-24) diverges when k = 1.

The complete elliptic integral of the second kind E(k) is defined
by the equation

E(k) = f 2 (1 — ksin? 0)1/2d0 (3-29)
0

This is evaluated numerically by using the expansion

k2 k1 kz kl k'2k3 ]
— it —_ 2 230
E(k)= K(k)[l <1+ + 55 —+ 52 2 + > (3-30)

The program follows. Since the value of K(k) is needed as an intermediate
step in the evaluation of E(k), the program calculates both. When this
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program is used, the earlier program is not needed. Line 1 is the title.
The remaining lines are identical to those of the first program with the
exception of lines 50, 60, 100, 110, 130, and 150. These lines calculate
and print E(k). The parameter R is the general term of the series of
Eq. 3-30, and S is the partial sum.

1 REM: COMPLETE ELLIPTIC INTEGRALS K(K) AND E(K)

10 PRINT Generates blank line.
20 INPUT "K=";K Calls for value of k.
30 Q=K 3

T
:8 ;;21 ATN(1) \ Initializes variables.
60 S=1 )
70 FOR J=1TO 5 3

80 Q=(Q/(1+SQR(1-Q*Q)NA2
90 P=(1+Q)*P

100 R=Q*R/2

110 W=R+S

120 NEXT J

130 E=P*(1—K*K*S/2)

140 PRINT "K(K)=";P

150 PRINT "E(K)=";E

160 GOTO 10

?»Calculates P and S.

Y,
Calculates E(K).
Prints results.

Returns for new input.

Accurate numerical results from reference 1 appear in the following table:

k2 K(k) E(k) k? K(k) E(k)

00 1.57079 6327  1.57079 6327 0.6 1.94956 7750  1.29842 8034
.1 1.61244 1349 1.53075 7637 T 2.07536 3135  1.24167 0567
.2 1.65962 3599  1.48903 5058 8 2.25720 5327  1.17848 9924
3 1.71388 9448  1.44536 3064 9 2.57809 2113  1.10477 4733
4 1777519371 1.39939 2139 99  3.69563 7363  1.01599 3546
5 1.85407 4677  1.35064 3881

Results from the program are identical to those shown. The integral of
Eq. (3-29) converges to the value 1 when k = 1, but the expansion of
Eq. (3-30) breaks down.

One further comment about the table may be helpful. The basic
parameter has been taken as k2 instead of k so the results can be checked
against reference 1. This means that the input numbers are v/.1, /2,
. . . . A few versions of BASIC allow a simple algebraic expression such
as SQR(.1) to be used as input, but most do not. To generate the table,
it may be advantageous to modify the beginnings of the programs to

20 INPUT "KA2=";L
25 K=SQR(L)



3-5. The Factorial Function

The factorial function x! is defined by the equation*
x!= j tTe~ tdt

0
By integrating by parts k times, we find that

xl=x(x—1)x—2) . .. (x—k+1)f 12 ket
0

=x(x—Dx—2)...x—k+Dl(x—k)]

(3-31)

(3-32)

If x is an integer, we set k = x. Then this reduces to the elementary
factorial. A program to evaluate the elementary factorial has been given
in Sec. 1-3. The easiest way to evaluate x! in the general case is to use

the asymptotic formula

1 1 1 1
1= = — = _— =
In x! <x+2) In x x+21n(27r) 12x( 30x2
11 1 )
105x+ 140x8  99x8 =~

This can be written in nested form as

== = —x - 4 — _
In x! (x 2) In x X 2 In (277) 12 <1 (

TRt

Equation 3-34 is very good for large values of x. For x .

30

(3-33)

(3-34)

5, it gives

results that are accurate to ten significant figures (if this is within the
capability of the computer). For smaller values of x, results are obtained

by using Eq. 3-32 in conjunction with 3-34. Thus, for example

5.3

13=——
3 5.3-4.3-2.3

The program follows. Line 1 is the title. Line 10 generates a blank line
between successive sets of data. Line 20 calls for the input x, using a
prompting message, and prints the response on the screen. In lines 30

* The Gamma function is also used. This is defined by the equation

79 TGI=G—1) =r xi-le=tde

0
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10
20
30
40
50
60
70

Q
(o)

90
100
110
120
130
140
150

160
170
180

T=(Z+.5)*LOG(Z)—Z+
S*LOG(8*ATN(1))+S/Z/12

through 80, the value of x is assigned to a parameter z, which is then
tested to see whether it is equal to or greater than 5. If it is less than 5,
it is incremented by 1. This operation is repeated until z > 5. At the
same time the product P = x(x + 1) . . . is calculated. Lines 90 through
130 calculate S, the sum of the nested series in Eq. 3-34. The calculation
proceeds from right to left, starting with 1/99 and ending with the 1
inside the first parenthesis. Line 140 is a RESTORE statement. If there
is a subsequent evaluation, this causes the READ statement to start over
with the first data entry. Line 150 calculates 7= In z!. Line 160 calculates
and prints the final result, x!. Line 170 is an optional line that returns
the execution of the program to the beginning so further results can be
obtained without entering RUN each time. (If this is not used, line 140
may be deleted.) Line 180 is the data line, which contains the constants
for Eq. 3-34.

REM: FACTORIAL FUNCTION

PRINT Generates blank line.
INPUT "X=";X Calls for value of x.
7Z=X Initializes z.

P=1 Initializes P.

IF Z>=5 THEN 90 3

%;;jpl \ Adjusts value of z.
GOTO 50 )

S=1/99 Initializes S.

FOR J=1TO 4 3

?_Ef;]gf:s /77 \ Calculates S.
NEXT J J

RESTORE Restores data.

} Calculates T.

PRINT "X!=";EXP(T)/P Calculates and prints result.
GOTO 10 Returns for new input.
DATA 140,105,30,1 Data line for constants in Eq. 3-34.

This program may be used for any real value of x, positive or negative,
provided that x is not a negative integer, in which case x! is infinite.

3-6. Bessel Functions

Bessel functions occur in many applications in science and engineering,
and are discussed in books on advanced engineering mathematics. The
series expansion for the Bessel function of the first kind Ju{(x) is
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G, O

LY EAY . -
J"(")“Vg<z) v+nll w+Dw+2)2t T

(3-35)

where x is any real positive number and v is any real number except a
negative integer. In nested form this becomes

x\? x\?
Jv(x)=—:—!(~’2—‘)v<1~1((1/22-13<1—§Z(‘—?2—2)(1-. . )) (3-36)

The number of terms necessary for convergence is

n=Int 2x +5) (3-37)

Most of the length of a program for J,(x) is taken up by the evaluation
of the factorial function. The series alone can be evaluated by a simple
program similar to the one written for the sine integral in Sec. 3-1. Let
Gu(x) = viJ(x). A program for G,(x) follows.

1 REM: G=NUFINU(X)

10 PRINT Generates blank line.
20 INPUT "NU=";NU Calls for value of v.
30 INPUT "X=";X Calls for value of x.
40 N=INTQ*X+5) Calculates n.

50 S=l1 Initializes S.

60 FOR J=N—1TO 1 STEP 1

70 S=1—-X*X/4/J/(NU+I)*S }Calculates S.

80 NEXT]J

90 G=S*(X/2)ANU Calculates result.
100 PRINT "G=";G Prints result.
110 GOTO 10 Returns for new input.

The foregoing program is adequate for the solution of most practical prob-
lems involving Bessel functions. Usually the factorial functions cancel or
occur in combinations that cancel. Two typical equations involving Bessel
functions are

Jl 4
Jux)y=0 y= J_;/f(xx))

These can be reduced to the equivalent forms

G14(x)

G =0 =4
174(x) y G_a/4(x)
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When v is a positive integer, say v = p, a segment to evaluate 1/p!
can easily be incorporated into the program. The program for Jpo(x) is

1 REM: BESSEL FUNCTION JP(X)

10 PRINT Generates blank line.
20 INPUT "ENTER P,X ";P,X Calls for values of p and x.
30 N=INTZ*X+5) Calculates #.

40 S=1 Initializes S.

50 FOR J=N-1TO 1 STEP —1

60 S=1—-X*X/4/3/(P+I)*S }Calculates S.

70 NEXTJ

g0 FOR JI=1TOP )

90 S=S/7 Divides S by pl.
100 NEXT]J j
110 IP=S*X/Q)AP Calcunlates J;(x).
120 PRINT "P=";P
130 PRINT "X=";X }Prints results.

140 PRINT "JP(X)=";JP
150 GOTO 10 Returns for new input.

Numerical results are given in the following table for several values of p
and x. These are taken from reference 1. Results from the program are
identical to those shown.

x Jo(x) Ji(x) Ja(x)
0 1.00000 00000 0.00000 00000 0.00000 00000
2 22389 07791 57672 48078 .35283 40286
4 —.39714 98099 —.06604 33280 36412 81459
6 .15064 52573 —.27668 38581 —.24287 32100
8 .17165 08071 23463 63469 —.11299 17204
10 —.24593 57645 .04347 27462 25463 03137

If a complete evaluation of J,(x) is needed for a nonintegral value
of v, this can be obtained by using the first program of this section in
conjunction with the factorial program of Sec. 3-5. The two programs
can easily be combined if desired, but a combined program is seldom
needed.

When v is a positive integer, say v = p, it is sometimes necessary
to use the Bessel function of the second kind as well as the Bessel function
of the first kind. The Bessel function of the second kind Y,(x) is given
by the formula

1= [2(in 3 +7) 50— G - %) (3-39)

where v is Euler’s constant and
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G

[ 1(p+1) 1-22(p+1p+2)

Jp(x)= — .. 339
)
5= (3) |60 W + 46 + DI L+ [ (40
x p 1 x\2 1 x\*
V()= — 1t 5) [1’1 (p—1)< ) +1.2(,,_1)(p-2)(§)
1 x 2p—-2
+'"+1-2-3...(p—1)(p~1)!(5) ] (3-41)
The function ¢ is defined by the equation
RN S | 1 ;
PR)=1++2+. .+ (3-42)

The evaluation of Y,(x) is much more complicated than the evaluation
of Jp(x) given earlier. The series of Eq. 3-40 for U,(x) resembles the
series of Eq. 3-14 for E(x). The coefficients are calculated in ascending
order i = 1,2,3, . . ., n, whereas we need them in inverse order for a
nested evaluation. We again use the backward nested format of Sec. 3-2.
It is convenient to calculate J,(x) at the same time, since Eq. 3-39 is
the same as 3-40 except that it does not contain the ¢ functions. We
rewrite Eq. 3-39 as

Jp(x) —~~1-,<-2->p+2n_2 (an +; (an.1 +— (an~2+ ))) (3-43)

where

. (*l)i—'l i
CTNe TP+ ..t D) (3-44)

The as are given by the recurrence formula
a;,=1 (3-45)

Equation 3-40 may be rewritten in the same form as 3-43. The general
coefficient is a;g;, where

g=¢(i—D+P(p+i—1) (3-46)
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n=6-0 () [ (s

)

The program follows. Line 1 is the title. Line 10 creates a blank line
between successive sets of data. Line 20 calls for the input p,x. Lines
30 through 90 evaluaie ¢(p) and p!, and lines 100 through 220 evaluate
J,(x) and U, (x). The parameter S is the partial sum of the nested series
for J,(x) in Eq. 3-43, and R is the partial sum of the corresponding
series for Up(x). Lines 230 through 300 evaluate V,(x). The parameter
T is the partial sum of the series for ¥,(x) in Eq. 3-41. Line 310 evaluates
Yp(x), using Eq. 3-38. Lines 320 through 350 print the results, and line
360 returns the execution to the beginning in preparation for further input.

1 REM: BESSEL FUNCTIONS OF THE FIRST AND SECOND
KINDS
10 PRINT Generates blank line.
20 INPUT "ENTER P, X ";P,X Calls for values of p and x.
30 M=l A
40 PHI=0
50 IF P=0 THEN 100
60 FOR I=1 TOP +Evaluates ¢(p) and p!.
70 M=I*M
80 PHI=PHI+1/I
90 NEXTI J
100 N=INTQ2*X+5) Calculates n.
110 A=l
120 S=1
130 G=PHI
140 R=G
150 FOR I=1 TO N—1
160 A=—A/1/(P+])
170 S=A +4*§/X/X
180 G=G+1/I+1/(P+I)
190 R=A*G+4*R/X/X
200 NEXTI
210 J=S*(/DAPH2*¥N—2)/M
220 U=I*R/S

Initializes variables.

+Calculates J,(x) and Up(x).
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Problems

230 V=0

240 IF P=0 THEN 310

250 T=1

260 IF P=1 THEN 300

270 FOR I=1 TO P—1

280 T=1+X*X/4/1/(P—1)*T

290 NEXT I

300 V=M/P*T/(X/2)AP

310 Y=*J*(LOG(X/2)+.5772156649)
—U—V)/ATN(1)/4

320 PRINT "P=";P

330 PRINT "X=";X

340 PRINT "JP(X)=";J

350 PRINT "YP(X)=";Y

360 GOTO 10 Returns for new input.

Some numerical results from reference 1 appear in the following table
for Y,(x).

rCalculates v, (x).

}Calculates Yp(x).

Prints results.

X Yo(x) Yi(x) Ya(x)
2 0.51037 56726 -0.10703 24315 —0.61740 810
4 —.01694 07393 .39792 57106 .21590 359
6 ~—.28819 46840 —.17501 03443 22985 790
8 22352 14894 -,.15806 04617 —.26303 660
10 .05567 11673 .24901 54242 —.00586 808

Results from the program agree with those shown. The values of J,(x)
given by the program are also consistent with those shown earlier.

3-1. Given the identity

< e . . T
fo I dt = sin x Ci(x) + cos x [2 Sx(x)]

write a program to evaluate the integral. The following results may
be used to check the program:
x 1 2 5 10
I .62144 96242 .39902 09886 .1881427746 .09819 10348

3-2. The following equation from reference 1 can be used to evaluate
the function E(x) for large values of x:

x% - 4.0364x + 1.15198

x245.03637x +4.1916

Using this equation, write a program to evaluate E;(x) and xe*E(x).

Verify the following results, and compare them with those found in
the text.

X 7 8 9 10
xe*E (x) .88649 1323 .89823 8205 .90775 7824 .91563 3304

xeZE(x) =
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3-3. The function E,(x) is defined by the equation

3-4.

3-5.

3-6.

xt
S—dt n=0123,. ..

B =[ %

Show that Eo(x) = e™*/x and that E;(x) is consistent with Eq. 3-
12. Also show that E,(x) satisfies the recurrence formula

En(x) =

1
[e-x - XEn~1(x)] nx2
n—1

Write a program to evaluate Ey(x) for n > 1. The program can be
checked against numerical results given on pages 245-248 of reference 1.

By rewriting Eq. 3-20 as

2 xr
erf x =—= e“IZI er?- 2y
\/;T. 0

obtain the series expansion

(2x?)  (2x?)? ]
1+—+——=+...

[ + -3 1:3-5

Write a program based on this series. Check the numerical results

given in Sec. 3-3 by using both the program of that section and the

new program. Use the same computer for both programs.

2x
if x = —= ¢~
[} \/—.—

With most computers, a program based on the present algorithm
gives much more accurate results than the program of Sec. 3-3.
Roundoff errors are smailer because aii terms are positive. (The dif-
ference may not be apparent if a highly accurate computer such as
the TI1-99/4 is used.)

Dawson’s integral F(x) is defined by the equation

F(x)= e‘sz e dt

0

Obtain the series expansion

R x? L oxt Xt
F(x)= xe~* (1+3_1!+5‘2!+7'3!+. . )

and write a program to evaluate F(x). The following results may
be used to check the program:

x 1 2 5 10
F(x) .5380795069 .3013403889 .1021340744 .05025 38471
The complementary error function erfc x occurs in some applications.
This is defined by the equation
erffcx=1—erf x
For large values of x, it is not possible to evaluate erfc x by using
the program of Sec. 3-3 for erf x, because the value of erf x is practi-

cally indistinguishable from 1. (The program of Prob. 3-4 is better,
but it is still not satisfactory for large values of x.) Write a program
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Functi erfc x = - 1— - Ca
unctions v x (2x2)  (2x2)2  (2x2)° ]

The following results may be used to check the program:

X 3.5 5 7 10
xe*erfc x .5435276 .5535232 .5586004 .5614099

3-7. Show that
b dx 1 b
. = - >bH2>0
a.L[w2~x%w2—x%w2 aK<a) ‘

bfb dx S K< b ) 2a>b>0
ol @ F B — 2 T pE \ et T 5 =02

=) /2 — h2

c~f - dx =1K<-L*i> azb>0
o [(@2+ x2)(b2+ x2)/2 ¢ a
a /% — h2

d.f dx =~1-K<—~‘5—3) a>b>0
b (@@= x)(2= b2 a a

Evaluate the integrals numerically for @ = .5 and b = 4.
Ans. a. 3.99060 5555 b. 2.76554 5985 c,d. 3.50150 7606

3-8. Revise the program of Sec. 3-4 for the elliptic integrals K(k) and
E(k), using a nested format for Eq. 3-30.

3-9. Write a program to evaluate the Beta function B(p,q). The equation
is

re+q)_ (@+qg—1

L@ @~ Dig— 1!

3-10. The Struve function H,(x) is related to the Bessel function Ju(x).
For v = p = a positive integer or zero, the equation is

2 x p+1 X 2 x 4
=) () ()
B =173 N YA LA 5\
252 ()| 3(+) 22 (e +3)(e+3)
Write a program to evaluate the Struve function H,(x). The following
numerical values of H,(x) may be used to check the program:

B(p,q) =

X 1 2 3 5
.56865 66 .79085 88  .5743061 —.18521 68
1984573 .64676 37 1.0201096  .80781 19

p
0
1
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The problem of evaluating a definite integral occurs frequently in applica-
tions. The best procedure is to find an exact analytical solution. However,
this is often impossible. A second method is to expand the integrand
into an infinite series and integrate term by term. We have used this proce-
dure in Chapter 3. A third method is to calculate the value of the integrand
at a number of discrete points and replace the integral by a weighted
sum, that is, approximate the value of the integral by an equation of the

type
b
f Fx)dx=(b—a) S wif () @-1)

where w; is an appropriate weighting factor. In this chapter we shall
consider several methods of this type. It will be assumed throughout the
first three sections that the integrand is continuous and that the interval
is finite.



4-1. Simpson’s Rule

One very simple and widely used formula for numerical integration is

xg h
1 =f ydx = (yo -+ 4_]/‘1 + yz) (4-2)
0 3
FIG. 4-1
Y
//7:
I |
| | !
! | |
| i !
Y Xo X1 X2 X

Points 0 and 2 are the end points and point 1 is the midpoint of the
interval, as shown in Fig. 4-1. h is the length of one subinterval. Equation
4-2 can be derived by passing a parabola through the three points. This
formula is exact if y = f(x) is a polynomial of degree < 3. In general it
is an approximation. Better accuracy is obtained by breaking the interval
into an even number n of subintervals, each of length k, as shown in
Fig. 4-2, and applying Eq. 4-2 to successive pairs of subintervals. This

leads to
In h ,

1=f ydx=-§(yo+4y1+2y2+4y3+2y4+-- -t yn) 4-3)
Zo

or
h n~-1

1=§[(yo+yn)+ > Wj_yj] wj=2or4 4-4)

i=1

Equations 4-2, 4-3, and 4-4 are known as Simpson’s rule.

FIG. 4-2
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The program follows. Line 1 is the title. Line 10 reads the values
of x, and x, from the data line, and line 20 generates a blank line between
successive sets of output. Line 30 calls for the value of n. (The reason
for using an INPUT statement for n is that it is customary in using
Simpson’s rule to make several approximations with different values of
n. The present format makes it possible to do so without editing the
program each time.) Line 40 calculates h, the length of the subinterval.
Lines 50, 60, and 70 calculate the value of y, and assign it to the parameter
S, which is the partial sum of the series in Eq. 4-3 or 4-4. Lines 80, 90,
and 100 calculate y, and add it to S. Lines 110 through 170 calculate
the weighted values of y; through yn-; and add them to S. Line 180
caicuiates and prints the value of I. Line 150 returns the execution of
the program to the beginning in preparation for the next approximation
with a new value of n. Line 200 is the subroutine for the integral

T2

I= J’ x2cos x dx 4-5)

Line 210 is the RETURN statement and line 220 is the data line, which
contains the values of xo and x,. Execution is started by entering RUN.
Varying levels of approximation are obtained by entering a new value of
# each time the prompting message of line 30 appears on the screen
After satisfactory convergence has been obtained, the execution is termi-
nated by pressing the BREAK key.

1 REM: SIMPSON’S RULE

10 READ X0,XN Reads values of x¢ and x,.
20 PRINT Generates blank line.

30 INPUT "N=";N Calls for value of n.

40 H=XN—-X0)/N Calculates length of subinterval.
50 X=X0 Evaluates contribution of
60 GOSUB 200 left end point to integral.
70 S=Y

80 X=XN N

% Gosup [t mion
100 S=S+Y )
110 wW=4 3

120 FOR J=1 TO N—1

130 X=XO+J*H

140 GOSUB 200

150 S=S+W*Y

160 W=6—W

170 NEXTJ )
180 PRINT "I=";H*S/3 Calculates and prinis result.

Evaluates contributions
of intermediate points.
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190 GOTO 20 Returns for next value of .
200  Y=X*X*COS(X) Subroutine.

210 RETURN RETURN statement.

220 DATA 0,1.570796327 Data line for end points.

The exact value of the integral of Eq. 4-5 is

2

I :12— — 2= 4674011003

Numerical results from the program are as follows:

n 2 4 8 16 32
I 4568 46689 467371 4673993 .46740099

With the program still in the computer, we can easily proceed to
evaluate other integrals. To terminate the foregoing execution, we press
the BREAK key. New lines 200 and 220 are then edited into the program.
Next, we enter the RUN command to start execution, and proceed as
in the first example. Consider the integral

I= r In(1 + x)

1+ x2 (4-6)

which has the exact value

=%ln2=.2721982613

Lines 200 and 220 now become

200 Y=LOG(1+X)/(1 + X*X)
220 DATA 0,1

Numerical results from the program are given in the following table.

n 2 4 8 16 32
I 2470 27233 272206 .2721987 27219829

In the foregoing two examples, the accuracy of the results could
be checked by comparing them with exact solutions. This is not possible
in a practical problem; if an exact solution is known, there is no point
in a numerical evaluation. The accuracy of an evaluation is inferred by
comparing two results with different values of n. The results may be as-
sumed to be correct through the point through which the digits coincide.
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Thus it follows from the last two results that the value of the integral
of Eq. 4-6 is .272198,

Several difficulties sometimes occur in using Simpson’s rule, and
we shall now consider the most common ones. Even when the integrand
is continuous, it may have indeterminacies at one or more points, most
often at an end. Consider, for example

L
1=f ME i @-7)
o X

At the point x = O, the integrand has the form 0/0. It is easily found
by I'Hospital’s rule that its value at this point is 1, but this evaluaiion
cannot be made by the computer; it must be inserted. We therefore revise
line 60 as well as 200 and 220. These lines are now edited to

60 Y=l
200 Y=SIN(X)/X
220 DATA 0,2

The accurate value of the integral is 1.605412977 (see Sec. 3-1). The
program gives the following approximations:

n 2 4 8 16 32
I 1.6069 1.60550 1.605418 1.6054133 1.60541300

Some care must be taken in using Simpson’s rule when the integrand
is very large in a small part of the interval and negligible elsewhere, as
in the case of a rapidly varying exponential. In this case, a uniform spacing
of points over the entire interval cannot be expected to give good results;
the points must be spaced more closely in the region in which the integrand
is large.

The basic Simpson’s rule is unsuitable for a function that contains
an oscillatory component. In this case the points must be spaced closely
enough so that the subinterval 4 is a small fraction not merely of the
interval, but of the wave length. If the interval contains a number of
waves, the required number of points is so great that the method becomes
impractical. A modification of Simpson’s rule has been developed by Filon
for the integrals

I " S(x)sin x dx f - S(x)cos x dx (4-8)

where f(x) is a function of the type that could be integrated directly by
the ordinary Simpson’s rule. The method is described in reference 12.
The formulas can also be found in reference 1, pages 890-891.



4-2. Gauss Integration

The basic principle of numerical integration is to replace an integral by
a weighted sum. Simpson’s rule consists of repeated applications of the
parabolic formula, Eq. 4-2. There are more efficient methods of utilizing
data from a large number of points. One procedure is to again use equally
spaced points, but fit a higher-order polynomial to all of the points. Formu-
las obtained in this way are known as Newton-Cotes formulas. However,
it is more efficient to drop the requirement of equally spaced points, which
is entirely arbitrary. This doubles the number of adjustable parameters
in Eq. 4-1, since the x;s may now be chosen for optimum computational
efficiency as well as the w;s. In this way it is possible to fit a polynomial
of order 2n — 1 to n points. This procedure is known as Gauss integration.
The derivation, which can be found in Sec. 1 of the appendix, is rather
lengthy. However, the results are simple and easy to use. The basic formula
for Gauss integration is

b b — n
1=[ fode =72 5wt (+-99)

where w; is a weighting factor and

b+ -
_ a+b a
2 2

X;j & (4-9b)

The parameter n is the number of points (not the number of subintervals).
The points are symmetrically located, as shown in Fig. 4-3 for n = 8.
The end points are not included in the set of points at which the function
is to be evaluated. (For this reason, the limits in Eq. 4-9a are denoted
as a and b instead of xo and x,.) It is convenient to choose an even
number of points and arrange them in symmetrically located pairs. Then
the equations can be rewritten in the form

FIG 4-3

fx)
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h_b—a _b+ta
2 m =

(4-10a,b)

I= h:z_::j w; [f(xm +h é,-) +f<xm —h g,)] (4-10c)

The parameter A is the half-length of the interval, and xn is the abscissa
of the midpoint.

The parameters &; and w; are found from the following table, which
is abstracted from reference 1. (The same results can be obtained from a
program in Sec. 1 of the appendix.) Extensive formulas and tables for
various forms of Gauss integration can be found in references 1 and il.

n & wj n & wj
2 0.5773502692  1.00000 00000 0.18343 46425  0.36268 37834
3 66459

33998 10436 65214 51549 g 9255324099 313706
4 8611363116 3478548451 79666 64774 22238 10343

.96028 98565 .10122 85363

.23861 91861 46791 39346
6 .66120 93865 .36076 15730
93246 95142 17132 44924

The program follows. Line 1 is the title. Line 10 reads the values
of a and b from the data line. Line 20 assigns the starting value O to
the parameter S, which is the partial sum of the series in Eq. 4-10c.
Line 30 calculates h, the half length of the interval, and line 40 calculates
Xm, the abscissa of the midpoint. Lines 50 through 110 constitute a FOR-
NEXT loop that evaluates S. Line 120 calculates I and prints the result.
Line 130 is an END statement that prevents the execution of the program
from running into the subroutine, which appears in lines 140 and 150.
Line 140 is the equation for the integrand y = f(x). We have chosen
Eq. 4-5, which is

T2
I =J‘ x2cos x dx
0

Line 150 adds the weighted value of y to the partial sum S. Line 160 is
the RETURN statement. Line 170 is the data line for the limits a and
b. Line 180 is the data line for the &;s and w;s. The data in lines 170
and 180 are given to ten significant figures. These numbers may be rounded
off if desired.

1 REM:GAUSS INTEGRATION-8 POINTS

10 READ A,B Reads values of @ and b.
20 S=0 Initializes S.
30 H=(B—A)/2 Calculates half-length of interval.

40 XM=(B+A)/2 Calculates abscissa of midpoint.
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50 FOR J=1TO 4 )
60 READ XI,W

70 X=XM-+H*XI

80 GOSUB 140 + Evaluates S.
90 X=XM-—H*XI
100 GOSUB 140

110 NEXTJ J

120 PRINT "I=";H*S Calculates and prints result.
130 END END statement.

140 Y=X*X*COS(X) }Subroutine

150 S=S+wW*Y )

160 RETURN RETURN statement.

170 DATA 0,1.570796327 Data line for end points.

180 DATA .1834346425, .3626837834,
.5255324099, .3137066459, | Data lines for Gauss
7966664774, 2223810345, ( coefficients.
9602898565, .1012285363

The data line 180 requires two comments. The data entries are shown
in block form to make them easy to read; actually they run continuously.
Also, for the Commodore 64, which has a maximum line length of 80
characters, line 180 must be broken into two lines.

For the integral of Eq. 4-5, the program gives the result I =
4674011003, which is correct to ten significant figures.

We again consider the integral of Eq. 4-6

7= J‘lln(l-i—x)
1+ x2

which has been evaluated previously by Simpson’s rule. Lines 140 and
170 of the program are edited to read

140 Y=LOG(I+X)/(1+X*X)
170 DATA 0,1

The numerical result is I = .2721982613, which is also correct to ten
significant figures.

The two foregoing examples may tend to give a false sense of confi-
dence in the accuracy of Gauss integration. This method sometimes gives
rather poor results, even for some very simple integrals. Consider

I=J‘1\/}dx 4-11)
0

Lines 140 and 170 now read
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140 Y=SQR(X)
170 DATA O, 1

The correct result is 0.66666...., but the program gives 0.66683... . The
present result is much poorer than the two preceding ones. This situation
will be clarified to some extent later in this section. However, there is
no practical way to determine the accuracy of Gauss integration in advance.
It is always necessary to carry out at least two evaluations of an integral
using different values of n. The results may be assumed to be correct up
to the point through which the digits coincide.

The restrictions noted for Simpson’s rule at the end of Sec. 4-1 also
apply to Gauss integration. However, indeterminacies are less likely to
occur with Gauss integration than with Simpson’s rule, because the former
method does not use the end points.

For a given level of accuracy, Gauss integration is much faster and
more efficient than Simpson’s rule. Also, indeterminacies are rare. How-
ever, these advantages are largely offset by the difficulty of verifying the
results; it is inconvenient to use several programs for each problem. It is
often advantageous to use a modified form of Gauss integration that is
shown schematically in Fig. 4-4. In this method the interval is broken
into m equal panels. The Gauss method with n points is applied to each
panel, and the results for the m panels are added. Fig. 4-4 shows the
scheme for m = 3, n = 4. The method is less accurate than a direct
application of ie Gauss method with i points, but it reduces the tabular
data to n entries instead of mn. Different levels of accuracy are obtained
with a single program by varying m while keeping n fixed. The equations
are

n=2"¢ (4-12a)
2m
X =a+ kh k=135...,2m—1 (4-12b)
2m—-1 n/2
I=h . 235 21 w; [f(x + hE;) + O — hE))] (4-12¢)
=1' K J:

FIG. 4-4

f(x)

>




97 A program follows for modified Gauss integration with n = 8 and any

Numerical
Integration

value of m. The content of the program is similar to that of the basic
Gauss program, but the organization is different. Line 1 is the title. Line
10 reads the limits a and b from the data. Instead of being read each
time they are used, the &s and ws are read only once, in lines 20 through
40, and their values are assigned to subscripted variables. Line 50 prints
a blank space between successive sets of output and line 60 calls for the
value of m. Line 70 calculates h, and line 80 assigns the initial value O
to the parameter S, which is the partial sum of the series in Eq. 4-12c.
Lines 90 through 170 constitute a nested FOR-NEXT loop. The inner
loop, which runs from line 110 through line 160, evaluates the contribution
of one panel to the integral. The outer loop moves the execution from
panel to panel and adds the results. Line 180 prints the final result, and
line 190 returns the execution to the beginning in preparation for the
next approximation. Lines 200 and 210 are the subroutine. Line 200 calcu-
lates the value of the integrand y = f(x), and line 210 adds the weighted
result to the partial sum S. Line 220 is a RETURN statement. Line
230 is the data line for the limits a and b, and line 240 is the data line
for the &s and ws. Varying levels of approximation are obtained by entering
different values of m in response to the INPUT statement. With m = 1
this program gives exactly the same results as the earlier program. It
follows that the integral of Eq. 4-5 will not provide an adequate test case
for this program, because a highly accurate result would be obtained with
m = 1 and the operation of the outer loop would not be checked. We
use the integral
. .
=J’ aresin x @13)

0 X

1 REM: MODIFIED GAUSS INTEGRATION
10 READ A,B Reads values of a and b.
20 FOR J=1TO 4
30 READ XIJ),W({)

}Reads Gauss coefficients.

40 NEXT]J

50 PRINT Generates blank line.

60 INPUT "M=";M Calls for value of m.

70 H=(B—A)/M/2 Calculates half length of one

panel.

80 S=0 Initializes S.

90 FOR K=1 TO 2*M STEP 2 )

100 XK=A+K*H
110 FOR J=1 TO 4 Evaluates
120 X=XK+H*XI) o L. Covers
130 GOSUB 200 contribution | i o
140 X=XK~—H*XI(J) of one interval.
150 GOSUB 200 panel.
160 NEXTJ
170 NEXT K J
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180 PRINT "I=";H*S Calculates and prints result.
190 GOTO 50 Returns for next value of m.
200 Y=ATNX/SQR(1-X*X))/X } .

210 S=S+Y*W(J) Subroutine.

220 RETURN RETURN statement.

230 DATA 0,1 Data line for end points.

240 DATA .1834346425, .3626837834,
5255324099, .3137066459, | Data lines for
7966664774, .2223810345, { Gauss coefficients.
9602898565, .1012285363

The integral of Eq. 4-13 has the exact value
T

I'=—1n2=1.088793045
2

The program gives the following results:

m 1 2 3 4 5
I 1.08856 1.08871 1.088747 1.088763 1.088772

With the program still in the computer, we can easily proceed to
evaluate other integrals. To terminate the present evaluation, we press
ihe BREAK key. New lines 200 and 230 are then edited into the prograin.
With any value of n, we verify the results found with the first Gauss
program for the integrals in Egs. 4-5 and 4-6.

We now return to a topic mentioned earlier: the uneven accuracy
of results obtained with Gauss integration. Some integrals like those of
Egs. 4-5 and 4-6 show excellent convergence, some like that of Eq. 4-13
show fair to good convergence, and some like that of Eq. 4-11 show poor
convergence. With the modified Gauss method it is possible to ignore
the problem and rely upon “brute force”; almost any proper integral can
be evaluated to a reasonably high degree of accuracy by using very large
values of m. Nevertheless, the question of convergence is of theoretical
interest. Also, the running time is shorter if an efficient process is used.

The Gauss method is based on the approximation of the exact func-
tion by a polynomial. The method works well if the function can be repre-
sented throughout the interval by a Taylor series which is substantially
convergent for terms of order no higher than those contained in the approxi-
mating polynomial. The best results are obtained if the integrand is repre-
sented by a rapidly convergent Taylor series. The integrands of Egs. 4-
11 and 4-13 do not satisfy this condition. This type of difficulty can often
be corrected by a simple substitution. By writing x? for x in Eq. 4-11,
we obtain the alternate form

[ 2 g
]: 2-2 X
JO * *
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For any values of n and m, Gauss integration now gives the exact result
I =2

The convergence of the Gauss process for the integral of Eq. 4-13
can be enhanced by getting rid of the arc sine term, which has a slowly
convergent Taylor, expansion. At the same time we must be careful not
to introduce a singularity. The best procedure is to write sin x for x.
Then the integral becomes

T2 x
1 ZJ‘ dx
o fanx

We use the modified Gauss program. The edited lines 200 and 230 are

200 Y=X/TAN(X)
230 DATA 0,1.570796327

With m = 1 we find that I = 1.088793045, which is correct to ten significant

figures.
A similar example is provided by the integral

T2
I =I sin x In sin x dx (4-14)
0

which has the exact value
I=1In2—1=—73068528194

We evaluate the integral as it stands by using the modified Gauss program.
Lines 200 and 230 become

200 Y=SIN(X)*LOG(SIN(X))
230 DATA 0,1.570796327

The results are

m 1 2 3 4 5
—I 306973 .306883 .306866 .306860 .3068576

The results are adequate, but there is room for improvement. In this case
the convergence is retarded by the presence of the In sin x factor in the
integrand, since the interval contains the origin. The best way to remove
this factor is to integrate by parts. Then we find that

w2 /2
I=[(1-—cos x) In sin x] *J- (1 — cos x)cot x dx
0

0
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We find by elementary calculus that the expression in brackets is equal
to zero at both limits. It follows that

. J‘"’Z 1—cos x4
tan x

Lines 200 and 230 of the modified Gauss program now become

200 Y=(COS(X)—1)/TAN(X)
230 DATA 0,1.570796327

With m = | we obtain the result I = —.3068528194, which is correct
to ten significant figures.

4-3. Romberg Integration

We have considered Simpson’s rule and Gauss integration. Another widely
used method of evaluating definite integrals numerically is Romberg inte-
gration. Romberg integration consists of an extrapolation process that
starts with the trapezoidal rule. This is

f:f(x)dx=3%[f(a)+2f<a +711)+2f<a +—2;l)+. : .+f(b)] (4-15)

where [ = b — a, the length of the interval, and n is the number of
equal subintervals. We consider the sequence of approximations obtained

by setting n = 1, 2, 4,8, . . ., 2% . . .. The first few values of I are
1
=2 [f@) + f(b)] (@16)
I, =£ [f(a)+ 2f(a + >+f(b)]

[f(a)+2f<a+ I>+2f<a+ l>+2f(a+ >+f(b)]

It is not necessary to calculate values of f for all the points in each approxi-
mation. Only the odd points in each approximation are new. Thus we
write

L ! 1
1,—2+2f(a+2)
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12=§+‘—i[f<a +Ti)+f<a +3T41>]

In general
=ty L 2§1f<a +Ll) (4-17
T Tk, 2k 17

The Romberg method consists of developing an array of approxima-
tions Ir,; as shown in the following table:

J 0 1 2 3
k
0 Ioo
b\
1 I1,o<11.1\
!
2 I r,o<1 2.1<;I 2,2\
3 Iso—I31—1I3592—1I33

The elements in the first column are the results I found from the trapezoi-
dal rule. We now denote these as i o. The remaining elements are found
by repeated applications of the recurrence formula

ALy Dy -y
b ==

(4-18)

The results on the diagonal converge toward the exact value. The theory
of Romberg integration can be found in references 2 and 10.

The program follows. Line 1 is the title. Line 10 reads the values
of xo and x,, line 20 calculates the length of the interval, and line 30
assigns the starting value k& = 0. Lines 40 through 100 evaluate and print
1(0) = I(0,0), using Eq. 4-16. Line 110 is a dummy input statement.
This was introduced in Sec. 2-1. It temporarily stops the execution until
the operator decides whether to proceed to the next higher approximation.
If the operator decides to continue, he or she presses the ENTER key.
Lines 120 through 200 calculate and print the next element in the column
j =0, using Eq. 4-17. Lines 210 through 240 calculate and print the
remaining elements of the same row, using Eq. 4-18. Line 250 terminates
the row in the display or printout by breaking the sequence of semicolons
generated by line 230. Line 260 sends the execution back in preparation
for the next cycle. Line 270 is the subroutine for the integral of Eq. 4-5,
which is



Numerical
Integration

102 I=[

T2

x2cos x dx

]

Line 280 is the RETURN statement, and line 290 is the data line. Lines
270 and 290 are ordinarily filled in by the user before running the program;
line 270 contains the equation for y, and line 290 contains the limits a
and b. After satisfactory convergence is obtained, the execution is termi-
nated by pressing the BREAK key. Further integrals can be evaluated
by editing new data into lines 270 and 290. Each new evaluation is started
by entering RUN.

1
10
20
30
40
50
60
70
80
90

100
110
120
130
140
150
160
170
180
190
200
210
220

230
240
250
260
270
280
290

REM: ROMBERG INTEGRATION—DOGUBLE SUBSCRIPTS

READ X0,XN
L=XN-X0
K=0
X=X0
GOSUB 270
1(0,0)=L+Y/2

=XN
GOSUB 270
1(0,0)=1(0,0)+L+Y/2
PRINT 0;1(0,0)
INPUT O$%
K=K+1
N=2AK
K(K,0)=I(K—1,0)/2
FOR R=1 TO N STEP 2
X=X0+L*R/N
GOSUB 270
1(K,0=I(K,0)+L+Y/N
NEXT R
PRINT K;I(K,0);
FOR J=1 TO K
(K, J)=(4AT*I(K,J—1)
—I(K—1,J—1))/(4AJ—-1)
PRINT I(K,J);
NEXT J
PRINT
GOTO 110
Y=X#X*COS(X)
RETURN
DATA 0,1.570796327

Reads xo and xi.
Calcnlates length of interval.

Initializes k.
N

Generates first
element of table.

J/
Interrupts execution.

)

Generates
\ element
of column 0.

4

rGenerates remaining
elements of same row.

Terminates row.
Returns for next cycle.
Subroutine.

RETURN statement.
Data line for end points.

A DIMension statement has not been included because this method is
almost never used with values of k greater than 10. However, a DIMension
statement can easily be inserted at the beginning of the program if desired.
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The Romberg table for the integral of Eq. 4-5 follows:

J 0 1 2 3 4

0 .00000

1 34257 45676 56

2 43581 .4668903 46756 523

3 45948 4673713 46740333 .46740 0757

4 46542 4673993 46740 113 46740 1099 .46740 11004

The numbers in the first column are the results of the trapezoidal rule.
The numbers in the second column correspond to Simpson’s rule. This
can be deduced from Eq. 4-18 and verified by referring back to Sec. 4-1.
The results of interest are the numbers on the diagonal. These converge
toward the exact result more rapidly than the Simpson results and much
more rapidly than the trapezoidal results. The last result is correct to
ten significant figures, with the exception of a slight discrepancy in the
last digit.

It is proved in reference 2 that the Romberg process converges toward
the exact result. However, it does not always converge rapidly. The integrals
of Sec. 4-2 which showed poor convergence with Gauss integration con-
verge even more poorly with Romberg integration. Some other examples
of slow convergence are given in reference 2. The convergence of the
Romberg process is sometimes slower than that of Simpson’s rule or even
the trapezoidal rule. The safest procedure in using Romberg integration
is to print the entire table. (It is best to transcribe it onto paper in the
format shown, because the screen and the print format of the average
microcomputer are not wide enough to display complete rows horizon-
tally.) The convergence of the various processes can then be examined,
and the most satisfactory result can be chosen.

The program using variables with double subscripts is straightforward
and easy to write, but it uses far more data memory than necessary. For
a problem in which each member of an array is related to all the other
elements, as in the solution of a set of simultaneous equations, the use
of variables with double subscripts is essential. However, for a solution
based on a recurrence formula, it is seldom necessary. We observed in
Sec. 1-5 that an analysis based on a recurrence formula with single sub-
scripts could be carried out without using subscripted variables in the
program. Similarly, an analysis based on a recurrence formula with double
subscripts can be carried out by using only single subscripts in the program.
A program of this type is more difficult to write than the first program
of this section, and the “brute force” approach of the first program is
often preferred. With modern computers, this approach is usually feasible;
there usually are computers available with ample capacity to handle most
problems. However, it sometimes happens that, with routine programming,
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a problem exceeds the capacity of the available computer, and a more
efficient programming technique must be found. It seems desirable to con-
sider an example of this type.*

To develop a more efficient program for Romberg integration, we
begin by referring back to the diagram near the beginning of this section.
We need elements from only two rows at any one time; each element of
row k is obtained by using prior elements of rows k — 1 and k. This
point is shown a little more fully in the following diagram:

Ii-1,5-2 I-1,5-1 Ii-1,j Ii-1,5+01

) - I i1 L.; I 541

Suppose that we are in the process of calculating ;. The only terms
that we need to carry out the evaluation and continue indefinitely are
shown in boldface type. We can proceed a step further and compress
the two rows into a single row, overwriting the elements of the upper
row with those of the lower row as we proceed. Two elements must be
considered separately. Since I;-1,j-1 is used at the same time as I, j-1
in the evaluation of I, ;, we give it the temporary lable T. Also, to prevent
the value of Ii-;; from being lost when I, ; is calculated, we give it
the temporary label U. Using the single subscript j, we now have the
equations

U=1I
.—4jIj-1’—T
’ 4i—1
T=U

which are lines 230, 240, and 250 of the following program. These equations
do not provide a starting value of T. We have to assign the old value of
Io to T at the beginning of each cycle. This is done in line 120 of the
following program.

1 REM: ROMBERG INTEGRATION—SINGLE SUBSCRIPTS

10 READ X0,XN Reads values of xo and x,.
20 L=XN—XO0 Calculates length of interval.
30 K=0 Initializes k.

40 X=X0 )

50 GOSUB 300

60 I0)=L*Y/2

70 X=XN

80 GOSUB 300

90 I(0)=I0)+L+Y/2
100 PRINT 0;I(0) /

| Generates first
element of table.

* The more efficient method that follows is somewhat similar to the one used for Romberg
integration with a programmable calculator in reference 8.
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110 INPUT QS Interrupts execution.

120 T=1(0) Assigns temporary label.
130 K=K+1 N
140 N=2AK
150 1(0)=1(0)/2
160 FOR R=1 TO N STEP 2 Generates
L element

170 X=XO0+L+R/N
180 GOSUB 300
190 I0)=LO)+L*Y/N

of column O.

200 NEXT R J

210 PRINT K;I(0); )

220 FOR J=1TO K Generates

230 U=I()) L.

240 I(N=(4AJ*I(J—1)—T)/(4AJ—1) >’f““’““‘“g

250 T=U elements of

260 PRINT I(J); same row.

270 NEXTJ J

280 PRINT Terminates row.

290 GOTO 110 Returns for next cycle.
300 Y=X#X*COS(X) Subroutine.

310 RETURN RETURN statement.
320 DATA 0,1.570796327 Data line for end points.

The new program operates in exactly the same way as the first program,
except that the lines to be filled in by the user are now 300 and 320.
Results are identical to those found with the first program. The lengths
and running times of the two programs are almost identical. However,
the second program uses much less space in the data memory.

Since the Romberg process uses the end points, indeterminacies some-
times occur. Consider the integral of Eq. 4-13 of Sec. 4-2, which is

-
arcsin x
[fasin

0 X

The integrand is indeterminate at the point x = 0, but the limit is clearly
1. The procedure is similar to that used in Sec. 4-1 with Simpson’s rule.
We have to revise line 50 as well as 300 and 320. The edited lines are

50 Y=1
300 Y=ATN(X/SQR(1—X*X))/X
320 DATA 0,1

The integrand is well behaved at the upper limit x = 1. However, the
arc tangent term in the amended line 300 is not. Therefore we need the
further revision

80 Y=2+ATN(l)
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The correct value of the integral is 7 In2/2 = 1.088793. Results given
by the program appear in the following table:

j 0 1 2 3 4 5
K

0 | 1.2854

1 1.1663 1.1266

2 | 1.1185 1.1026 1.1010

3 | 1.0999 1.0938 1.0932 1.0930

4 | 10929 1.0906 1.0904 10903 1.0903

5 | 1.0903 1.0894 1.0893 1.0893 1.0893 1.0893

For this problem the Romberg method has little merit; the Romberg results
on the diagnonal are not much better than the Simpson resulis in the
second column.

Like the Gauss method, the Romberg method is sensitive to the
form of the integrand. As in Sec. 4-2, we now consider the equivalent
integral

T2 x
I=I dx
o tanx

which is obtained by writing sin x for x in the integral of Eq. 4-13.
The integrand is indeterminate at the lower limit, with a limiting value
of 1. Also, the factor tan x is infinite at the upper limit. The following
changes are now edited into the program:

50 Y=l
80 Y=0
300 Y=X/TAN(X)
320 DATA 0,1.570796327

Numerical results appear in the following table:

j 0 1 2 3
k

0 7854
1 1.0095 1.084266
2 1.0687 1.088427 1.088704

1.0838 1.088768 1.0638751 1.088792

(%)

it can be seen that these resuits are much better than those obtained
with the original integral of Eq. 4-13. The Simpson resuits in the second
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4-4. Integrals with Discontinuous Integrands

The methods considered in the first three sections apply only to proper
integrals. The integrals are continuous and the intervals are finite. In this
section the intervals are still finite, but the integrands are infinite at one
or both end points. Simpson’s rule and Romberg integration break down
for an integral of this type, since yo or y, or both are infinite. It is possible
to obtain a numerical result by applying Gauss integration directly, since
the end points do not appear explicitly in the formulas, but this procedure
is unsound and does not usually lead to good results. The best procedure
is to transform the improper integral into a proper integral, then use a
method from one of the first three sections. We shall consider three com-
monly used methods of removing a singularity in the integrand.

One useful method is substitution. We illustrate this with the inte-

gral

2.25 o 1
I= f (4-19)
which has an infinite integrand at the lower limit. We write x2 for x.
Then

1.5
1 =f 2e~7 dx
[}

This is a proper integral. We use the modified Gauss program of Sec. 4-
2. Lines 200 and 230 are edited to

200 Y=2*EXP(—X*X)
230 DATA 0,1.5

With m = 1 the numerical result is I = 1712376787, which is accurate
to ten significant figures. (This can easily be verified by using the program
of Sec. 3-3.)

A second method is integration by parts. An example is provided
by the integral

In x
I= f S (4-20)

which has a logarithmic singularity at the lower limit. We find that

1 Larctan x
=|ln x arctan x | — dx
(V]

0 X
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We find by elementary calculus that the expression in brackets is equal
to zero at both limits. It follows that

Larctan x
I=— f dx
0

X

The new integrand is finite everywhere, with a limiting value of 1 at the
lower limit. The integral can be evaluated numerically as it stands. How-
ever, it is somewhat similar to the integral of Eq. 4-13, and it leads to a
rather inefficient numerical process because of the arc tangent factor. It
is desirable to transform the integral further by writing tan x for x. Then
we have

1=—f —-J[ dx
sin x cosx 2sin x

We use the modified Gauss program. Lines 200 and 230 become

200 Y=X/SIN(X)/2
230 DATA 0,1.570796327

With m = 1, we find that I = —.9159655943, which is correct to ten
significant figures.

A third method of eliminating a singularity is to add and subtract
a related integral. We again use the integral of Eq. 4-20 as an example.
We rewrite it as

1 1 l
I=Lln.xdx—]0<ln x-li);)dx

1x21n x
=T e ®

The new integral is proper; the integrand is equal to zero at the lower
limit. We apply the modified Gauss program. Lines 200 and 230 become

200 Y=X*¥X*LOG(X)/(1+X*X)
230 DATA 0,1

For several values of m, the results are

m 1 2 3 4 5
—I 9159667 .91596571 .91596563 .91596561 .915965602

Some further examples may be of interest. Consider

o
1=f EIN 4-21)
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The integrand is infinite at the lower limit. (It is zero at the upper limit.)
We write sin? x for x. Then it follows that

w2
I=4J- sin x In sin x dx

0

which is proper. The new integral is identical to the integral of Eq.
4-14, which has already been evaluated. The result is I = —1.227411278.
This procedure can be made more general. An integral of the type

(A )
I—L———--\/b_?)_cdx (4-22)

can often be evaluated by writing b sin? x for x. This usually leads to a
successful result when f(x) is a continuous function, and sometimes suc-
ceeds even when it is not, as in the preceding example.

It is not always easy to see by inspection what procedure will lead
to a satisfactory result; sometimes it may be necessary to try two or more
methods or a combination of methods. The integral

I J' ' Inx (4-23)
= Ry =l 7 . 4 -

) ‘\/1_—_-.;{E
resembles the integral of Eq. 4-21, and we might try to evaluate it by
an analogous procedure, writing sin x for x. However, this does not work;

the resulting integral still has a logarithmic singularity at the lower limit.
Integration by parts leads to a more satisfactory result. Thus

1 1 1
. arcsin x
I=[ln X arcsin x] —I ———dx

0 0 X

. .

arcsin x
= f AN X i
0 X

The new integral is identical to the integral of Eq. 4-13, which has already
been evaluated. The result is I = —1.088793045.

There are special methods of the Gauss type for a number of integrals,
both proper and improper. Some of these are more complicated than the
basic Gauss method; others are simpler. One useful special method known
as Gauss-Chebyshev integration evaluates integrals of the form

(" Sf(x)dx
! —fa [(x — a)(b — x)]/2 (4-24)

where f(x) is a continuous function. (This can be evaluated by integration
by parts followed by the standard Gauss integration, but the special method
is simpler and more efficient.) The formulas are
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10
20
30

50
60
70
80
90
1060
110
120
130
140
150

h= 5 xm=a+h (4-25a,b)
_ jm .
Xm + h cos o (4-25¢)
m ARt e
I1== 2 f(x) (4-254)
R j=1.3.5

This method is much neater than the standard Gauss method. No tabular
data are required because the x;s are given by an explicit formula and
there are no weighting factors. The program, which follows, is essentially

self-explanatory, bui it differs in one detail from the earlier programs of

this chapter. Since the integrand is evaluated at only one point in the
program, this is done directly in line 90; there is no subroutine. Lines
90 and 150 are set up to evaluate the integral

_cosXx cos X
I= J \/T—_xz (4-26)
REM: GAUSS-CHEBYSHEV INTEGRATION
READ A,B Reads values of a and b.
PRINT Generates blank line.
INPUT "N=";N Calls for value of 7.
S=0 Initializes S.
H=(B—A)/2 Calculates half-length of interval.
XM=A+H Calculates abscissa of midpoint.
FOR J=1 TO 2+N STEP 2
X=XM-+H=*COS(2+J/N+ATN(1))
Y=COS(X) Calculates S.
S=S+Y
NEXT J
I[=4xS*ATN(1)/N Calculates result.
PRINT "I="1 Prints result.
GOTO 20 Returns for next value of n.
DATA —1,1 Data line for end points.

The operation of this program is similar to that of the program for modified
Gauss integration. Various levels of approximation are obtained by entering
a value of n each time a question mark appears on the screen. After the
results have converged satisfactorily, the execution of the program is termi-
nated by pressing the BREAK key. The results for several values of n
are

n 2 3 4 5 6
I 2388 2.40407 2.4039388 2.403939432 2.403939431
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be evaluated with the same program by editing lines 90 and 150.

":ggggg Other Gauss-Chebyshev algorithms are available for integrals of the
type
b/x —a .
f ( ; ) f(x)dx f [(x — a)(b — X)]/2f(x)dx (4-27a,b)
a — X

where f(x) is a continuous function. However, it is not necessary to write
special programs for these. The program just given can be used by simply
redefining f(x) to include a factor of (x — a) or (x — a)(b — x). The
integral of Eq. 4-27b can be evaluated directly by standard Gauss integra-
tion, since it is proper, but the special program is more efficient.

Formulas and tables for various types of Gauss integration can be
found in references 1 and 11.

4-5. Integrals with Infinite Intervals

Integrals with infinite intervals are sometimes troublesome. Usually the
best procedure for an integral of this type is a substitution. Consider

the accurate value of which is .6214496242. (See Prob. 3-1.) The easiest
way to evaluate this integral is to write tan x for x. Then we have

T2
I =f e~ tan x Ay
0

which is proper. It is always possible to convert an infinite interval into
a finite interval by the tangent substitution. However, it sometimes happens
that the transformed integral has some new anomaly that causes as much
trouble as the original one. In the present case there is no difficulty. We
use the modified Gauss program. Lines 200 and 230 become

200 Y=EXP(—TAN(X))
230 DATA 0,1.570796327

The results for several values of n are

m 1 2 3 4 5
I 621479 .6214468 .6214499 .62144965 .621449605
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the integral

I=] ——
f o(Inx)?+1
However, this leads to a less efficient evaluation than the one just given.

An alternate procedure is to first break the interval and then make
a substitution in one of the new integrals. Thus

1 e~z
_J o X 241
By writing 1/x for x in the second integral, then combining the two
integrals, we arrive at the result

I e:+e—1/z
f R

(4-29)

Lines 200 and 230 of the modified Gauss program become

200 Y=(EXP(—X)TEXP(—1/X))/(X*X+1)
230 DATA 0,1

The results for several values of m are

m 1 2 3 4 5
I .6214513 .62144989 .621449601 .621449625 .6214496242

Another procedure that is sometimes used as a last resort is to termi-

nate the interval at some large but finite value of x, then apply numerical
integration. Thus, for example, we can write

T = Ll £ 4-30
f0x2+1 x‘fo 1 Lox2+1 x (“-30)

We discard the second integral on the right and apply the modified Gauss
program to the first. Lines 200 and 230 become

200 Y=EXP(—X)/(X*X+1)
230 DATA 0,10

For several values of m, we obtain the results

m 1 2 3 4
I .62103 .6214420 .6214455 .6214489
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Problems

We take the final result as .621449, which is very close to the correct
value. It is easy to check the error incurred by dropping the last term
in Eq. 4-30. We observe that

© eI 1 = 1
< e ¥ =—-—-=‘“”(>(KN)
flox2+1dx 101) 08 = T01 - o0 45

There are two special methods of the Gauss type for the evaluation
of integrals with infinite intervals. Unfortunately their utility is limited.
An integral of the type

I= f " e f(x)dx 4-31)

can be evaluated by a procedure known as Gauss-Laguerre integration.
The difficulty with this method is that the points are not symmetrically
distributed, so a solution with n points requires 2n data parameters (n
{;s and n wjs). The method sometimes requires very extensive tabular
data for a satisfactory level of accuracy; for example, a 20-point solution
requires 40 numerical constants in the data lines. It is possible to break
the interval into a finite part and an infinite part, as in Eq. 4-30, then
use the modified Gauss program for the finite part and Gauss-Laguerre
integration for the infinite part.
An integral of the type

I=Jﬂm e~ f(x)dx (4-32)

can be evaluated by Gauss-Hermite integration. In this procedure the
points are symmetrically distributed, but there is another drawback. In
most integrals of the type in Eq. 4-32 that occur in practice, the lower
limit is zero instead of —o. The two cases are not equivalent unless f(x)
happens to be an even function.

Evaluate the following integrals numerically. (Analytical results are
given to make it easy to check the numerical evaluations.)

1 x3 5
4-1. =-—1In2
TP
1 dx T
4-2, ==
fol+x+x2 3\/§

1 dx 9
4-3. Lx2+5x+6_1n8
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4-4.

4-5

4-6.

4-7.

4-8.

4-9,

4-10.

4-i1.

4-12,

4-13.

4-14.

4-15,

4-16.

4-17.

4-18.

4-19,

4-20.

4-21.

1 dx
J‘Oﬁ—ln(\/—i+ 1)

T (2 X 2
f ( ) dx=qalIn2
o \sin x

" dx 27
Jo @+cosx)2 33
7 xsin x 2

o 1+ cos?x x 4

4
f In{(1 + tan x) dx = In2

0

oo |3

w2
f xmsin x dx n=0,1,2,3,45

[

w2
f lnsinxdx=~zln2
0 2

2

T
f xlnsinxdx=--7-r-—ln2
0 2

2 dx _
f V= De—xpe T

2 79— 5\ 1/2 -
dx =—
f1<x—1> x 2

2 T
[1c=ne—wprax=T
1 8
J‘“’ dx w
o xt+1 232
J’“ x dx _11-_"_’
0 et — 1 6
*® xdx
f a = 0.5,1.0,1.5,2.0,2.5
) exr — ]
J‘“’ x dx __17_2
oe*+1 12
T xInx r?
X = —
o1—x2 24
= 1 e T
f < ———)dx='y=.5772156649
o \ef— 1 X

In Sec. 3-2, we studied the exponential integral
3 -1
Ee=[
Jo ot

Evaluate the function xe®E,(x) for x = 2, 4, 6, 8, 10, and check
the results against those given in Chapter 3.
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Numerical sin x arcsin x
Integration a. lim —= =1 b. lim =1
=0 x =0 X
) . arctan x
c. lim =1 d. lim =1
-0 tan x =0 X

1__
COSX=O

e. lim f. lim =1
=0 tan Xx =0 et — |
4-23. Verify the following limits used in this chapter:
a. lim [xInx]=0 b. lim [In x arcsin x] =0
z-0t z—0t
¢. lim [In x arctan x] =0 lim [(1 —cos x)In sin x] =0
z-0t d. z-ot
2 I
e. lim X _ f. lim —=—— =0

-0t 14 x2? -/ 1—x
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5-1. First-Order Differential Equations

4

16

THE RUNGE-KUTTA METHOD

This is one of the most widely used methods of solving differential equa-
tions. We consider the general first-order differential equation

dy

P A (C) (5-1

Let the value of y be known at one point, say y = y; at x = x;. Then
the value of y at a neighboring point j + 1 is given by the equations*

qo = f(%5, ») (5-2a)

h h
aw=f(n+35+74%) (5-20)

* Derivations of all of the equations used in this chapter can be found in books on numerical
analysis; see, for example, reference 5 or 10. Also see Sec. 2 of the appendix.
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h h
qw=f (5 +3 5+ 742) (520
g =f (5 + h, y + hqe) (5-2d)
h
Vi1 =y + r (qot290)+ 290 + qs) (5-2¢)

where £ is the length of the interval. The subscripts enclosed in parentheses
designate the Runge-Kutta parameters, all of which refer to the same
interval. Subscrints without parentheses denote the interval (or subinter-
val).

If the desired point is some distance from the starting point, the
interval is divided into a number of increments each of length h, where

p=2n "% (5-3)
n

and n is the number of increments.
Before writing the program, it is desirable to rewrite the foregoing
equations as follows:

X = Xj Yo =y
h )
Xy = Xj ‘*“?: Yo =y + 5
h hqq)
X(2) = X;j 2 Y@ =Y 2
X =x+h Yo =y + hqe

90 = f(x©, Vo)
9w = f(x@, yay)

9@ = f(x@, Y@)
9@ = f(x@» y@)

h
Yit1= Y+ 3 g+ 290+ 29 + q@3)

Instead of writing out all the foregoing equations individually in the pro-
gram, we condense them into a form that makes it possible to use a loop.
Thus, for r == 0, 1, 2, 3, we have

Cn =5’ G-r+1 (5-42)

h
Eqy=~

C sgn r (5-4b)



118

Differential
Equations

Xy =X+ Eqg) (5-4¢)

Yo=Y+ Emque-1 (5-4d)
g =f(xan yi) (5-4¢)
3
S= 2. Cirqay (5-4f)
hS
Viti =Y "‘“’6" (5-4g)

The expression sgn r in Eq. 5-4b is a signum function; this has been dis-
cussed in Secs. 1-1 and i-2. The present format has iwo advaniages: it
leads to a compact program, and it can easily be extended to higher-
order differential equations.

A program follows for the equation

y—y=x (5-5)
with the initial conditions

x=0 y=1

Line 1 is the title. Line 10 reads the initial values of x and y from the

not used in the program; their values are denoted as xo and y, (X0 and
YO in the program) at the beginning of whatever increment is being consid-
ered. Line 40 creates a space between the initial values and the final values
that follow. Line 50 calls for x,, the value of x at the end of the interval,
and n, the desired number of subintervals. Line 60 calculates &, using
Eq. 5-3. Lines 70 through 190 constitute a nested FOR-NEXT loop that
represents Egs. 5-4. The inner loop of lines 90 through 160 carries out
the Runge-Kutta analysis for one increment. Line 140 represents Eq.
5-5. The outer loop of lines 70 through 190 carries the analysis forward
from increment to increment, starting at the initial point O and ending
at the final point n. After the analysis is completed for each increment,
the values of x and y at the end of the increment become the new xo
and y, for the next cycle. Line 200 returns the execution of the program
to the beginning in preparation for further calculations. The data line
210 contains the initial values xo and yo. The equation line 140 and the
data line 210 are filled in by the user each time the program is run.

REM: FIRST ORDER D.E. (RUNGE-KUTTA)

READ X0,Y0D Reads values of xq and yo.
PRINT "INITIAL VALUES:" Prints heading.

PRINT "X=";X0,"Y=";Y0 Prints x and y.

PRINT Generates blank line.
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60

70

80

90
100
110
120
130
140
150
160
170
180
190
200
210
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INPUT "ENTER XN,N";XN,N Calls for values of x, and n.
H=(XN—X0)/N Calculates length of subinterval.
FOR J=0 TO N—1 )

S=0

FOR R=0 TO 3
C=R*(3—R)/2+1
E=H/C*SGN(R)
X=X0+E
Y=YO+E*Q
Q=X+Y
S=S+C*Q

NEXT R

X0=X
YO=YO0+H*S/6
NEXT J )
GOTO 30 Returns for next interval.
DATA 0,1 Data line for x, and y,.

Analyzes Analyzes
Lone >entire
increment. interval.

Results are given in the second column of the table below for the
following input data:

X 5 10 15 20
n 5 10 15 20

Each value of n corresponds to the value of x, directly above it. The
increment is 2 = .1. The exact solution

y=2eT—x~—1 (5-6)
is shown for comparison in the first column of the table. Higher accuracy
can be obtained by using smaller increments. Results obtained with

h = .05 are shown in the third column.

yn Exact h=.1 h=.05

Xn
0.5 1.797443  1.797441  1.797442

1.0 | 3.436564 3.436559  3.436563
1.5 6.463378  6.463368  6.463377
2.0 | 11.778112 11.778090 11.778111

When the value of y is required at more than one point, it is not
necessary to start the calculation at the original point each time. The
program is set up so that the final values of x and y become x, and y.
Also, the GOTO statement in line 200 returns the execution of the program
to line 30. The computer prints the result, continues to line 50, then
stops and waits for further input. Consider the example just given with
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value of y at the point x = 1, we simply enter the value 1 and the
desired number of increments in the next interval, 5. The result is identical
to the one given in the table. Subsequent results are obtained in the same
way. After the result at the point x = 1 has been found, we obtain the
result at the point x = 1.5 by entering 1.5, 5.

The Runge-Kutta method has several advantages. It is easy to pro-
gram and gives good accuracy. Also, the analysis for each increment is
self-contained; results at the point j + 1 are found by using only data
at the point j. Since the calculation does not require a knowledge of results
at the left of the starting point, the procedure is self-starting. Also, it is
possible to use different values of the increment # in the same calculation;
this is sometimes advantageous if the function f varies slowly in one region
and rapidly in another region. However, the method requires a great deal
of computation, and it has a long running time in comparison with the
more efficient method that we shall consider next.

THE ADAMS METHOD

It is sometimes more advantageous to use a different type of method in
which the value of y at any point is expressed in terms of the values of
f and possibly y at several preceding points. One commonly used method
of this type is the Adams method. The equations are

h
Yir1=y + B! (5565 — 59f5 -1+ 37fi-2— 9f-3) (5-7a)

h
yis1=y + By (9f;41+19ff — 5fi-1+ fi-2) (5-7b)

Equation 5-7a is used first. This gives the value of y at the point j + 1
in terms of its value at point j and the values of f at points j, j — 1,
j — 2, and j — 3. This method cannot be used to start an analysis; it is
always necessary to have the values of f at three points to the left of
the increment being considered. This can be done by using the Runge-
Kutta method for the first three increments. The analysis is then switched
to the Adams method. Equation 5-7a is not sufficiently accurate to give
satisfactory results for most problems. Equation 5-7b is more accurate,
but it cannot be used directly because the term fj+: on the right side is
not known until after y;+, has been evaluated. The procedure is to use
Eq. 5-7a first to obtain a preliminary estimate of y;+1. The corresponding
value of fj+; is found by evaluating the function f(x,y) defined by the
differential equation. This is the function g(o of the Runge-Kutta analysis;
in the present program it is evaluated in a subroutine at the end. An
improved value of yj+1 is then found from Eq. 5-7b. A method of this
type is known as a predictor-corrector method. Equation 5-7a is the pre-

dictor, and BEq. 5-7b is the corrector. This method is much more efficient
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than the Runge-Kutta method, because there is less computation in each
cycle. In the Runge-Kutta solution, the function f is evaluated four times
in each cycle; in the predictor-corrector solution, it is evaluated only once.
If the differential equation is complicated, this makes a great difference
in running time.

A program follows for the same differential Eq. 5-5 and initial condi-
tions as before. The program is composed of several segments. Lines 1
through 50 contain some preliminary statements that are almost identical
to those of the Runge-Kutta program. Lines 60 through 190 constitute
the Runge-Kutta loop. This also corresponds very closely to the earlier
program with the exception of line 140, which is new. We temporarily
pass over lines 140, 200, and 210. Lines 220 through 270 constitute the
Adams loop, which represents Eq. 5-7. The parameters f;, fj—1, f;-2, and
Ji-a are denoted in the program as FO, F1, F2, and F3, respectively.
This is not a FOR-NEXT loop; the loop is generated by the incrementing
of j in line 220 together with the IF-THEN statement of line 270. Lines
280 through 320 print the results and prepare for further calculations.
Lines 330 through 350 are the subroutine, the RETURN statement, and
the data line. Lines 330 and 350 are filled in by the user each time the
program is run.

On each cycle it is necessary to reassign the values of the fs in
preparation for the next cycle. This is done in line 200. The old values
of fi, fi-1, and fi-» become the new fj—i, fi-2, and fj-s, respectively.
The current value of g becomes the new f;. This segment operates with
both the Runge-Kutta loop and the Adams loop. Execution is transferred
from the Runge-Kutta loop by line 140 and returned by line 210. On
the cycles j = 0,1,2, the Runge-Kutta loop calculates fo, y1, fi, Va2, fo
and ys. It then starts the cycle j = 3 and calculates f3. The parameters
fo, f1, f2, and f3 are stored as fi-3, fi-2, fi-1, and £ (F3, F2, F1, and
FO in the program) in preparation for the Adams loop. On the cycle
J = 3 the execution does not return to the Runge-Kutta loop but passes
to the Adams loop, where it remains thereafter.* The execution is con-
trolled by line 210, not by the FOR statement in line 60. The value
of the upper limit in line 60 is immaterial, provided that it is not less
than 3.

1 REM: FIRST ORDER D.E. (RUNGE-KUTTA & ADAMS)
10 READ X0,Y0 Reads values of x, and y,.
20 PRINT "INITIAL VALUES:

X=";X0, "Y=":Y0 Prints initial values.

30 PRINT Generates blank line.
40 INPUT "ENTER XN,N'";XN,N Calls for values of x, and n.
50 H=(XN—X0)/N Calculates length of subinterval.

* The FOR-NEXT loop is never completed because of the final transfer on the cycle
J = 3. With some computers, an incomplete FOR-NEXT loop may cause a malfunction
when a subsequent FOR-NEXT loop is executed. In this program there is no trouble because
there is no subsequent FOR-NEXT loop.



60 FOR J=0TO 3 )
70 S=0
80 FOR R=0 TO 3
90 C=R*(3—R)/2+1
100 E=H/C*SGN(R)
110 X=XO0+E
120 Y=YO+E*Q
130 GOSUB 330
140 IF R=0 THEN 200
150 S=S+C*Q
160 NEXT R
170 X0=X
180 YO=YO+H*S/6
190 NEXTJ )
200 F3=F2:F2=F1:F1=F0:F0=Q Reassignments.
210 IF J<3 THEN 150 Conirols execution.
220 J=J+1
230 Y=YO+H*(55*¥F0—59*F1+37*F2—9*F3)/24
240 X=X+H Adams
250 GOSUB 330 loop.
260 YO=YO+H*(9*Q+19*FO0—5*F1+F2)/24
270 IF J<N THEN 200

*Runge-Kutta loop.

280 PRINT "X=";X,"Y=";Y0 Prints results.

290 PRINT Generates blank linc.

300 INPUT "ENTER N";N Calls for new value of n.
310 N=J+N Adjusts values of n.

320 GOTO 200 Returns for next interval.
330 Q=X+Y Subroutine.

340 RETURN RETURN statement.
350 DATA 0,1 Data line for x, and yo.

This program differs in one respect from all previous programs in this
book. Until now we have consistently used only one statement on each
line. This has two advantages. Programs written in this way can be used
as they stand on almost any computer. Also, they are usually a little
easier to read than programs with multiple statements. However, this for-
mat becomes rather clumsy when a program contains a number of very
short and very closely related consecutive statements. We have combined
four reassignments into line 200. This does not limit the generality of
the program; for any computer that does not accept multiple statements
on one line, line 200 can easily be expanded into lines 200, 201, 202,
and 203.

We mention in passing that the reassignments in line 200 could be
avoided by using subscripted variables for f. Then, instead of starting
with FO at the beginning of each increment, we would use F(J), where
the value of J increases indefinitely as we proceed. However, this does

122  not significantly shorten the program, and it takes much more space n
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the data memory, since all the old values of f are retained. If the calculations
are carried out to large values of x, this eventually limits the value of x
that can be reached. With the present method the calculations can be
continued indefinitely, since the same data memory space is continually
reused.

Results are given in the second column of the table below for the
following input data:

m .5, 10, L5 20
n 5, 10, 15, 20

Each value of n corresponds to the value of x, directly above. The incre-
ment is & = .1. Exact results from Eq. 5-6 are shown for comparison in
the first column of the table. Results obtained with 2 = .05 are shown
in the third column.

yan Exact h=.1 h=.05
Xn

0.5 1.797443  1.797442  1.797443
1.0 3.436564  3.436561  3.436564
1.5 6.463378  6.463371  6.463379
2.0 | 11.778112 11.778095 11.778114

Like the Runge-Kutta program, this program is set up so that results
after the first can be obtained without returning to the original starting
point. However, there is an important difference in input. In the Runge-
Kutta method, we had a free choice of the increment A for each new
interval, so the new values of both x, and n were entered. In a predictor-
corrector solution, the calculations at each point use data from preceding
points, so 4 is fixed. Only the new value of n is entered.

ACCURACY OF NUMERICAL SOLUTIONS

Iteration is sometimes used to improve the accuracy of predictor-corrector
solutions. Consider the Adams program. After the corrected value of yj+q
has been found from Eq. 5-7b in line 260 of the program, it is possible
to run the subroutine again with the corrected value of y;+; and obtain
an improved value of fj+,. The calculation with Eq. 5-7b is then repeated,
using the improved value of fj+, to obtain a more accurate value of p; ;.
This cycle can be repeated as many times as desired. However, this refine-
ment increases the length and running time of the program, and it does
not guarantee accurate results. The iterations do not approach the exact
result because Eq. 5-7b is not exact; it has an inherent error for any
value of h greater than zero. If highly accurate results are desired, the
most effective and reliable procedure is to reduce the value of A. In all
the methods of this chapter, the error per step is of order 45, and the
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the accuracy of the results improves rapidly as n is increased. However,
this procedure cannot be continued indefinitely because the accuracy of
the results is eventually limited by roundoff error.

Normally results approach the exact values as & — 0 (with the exception
of roundoff errors). However, it occasionally happens that a numerical
evaluation breaks down, and no satisfactory result can be obtained. Exten-
sive discussions of this problem can be found in books on numerical analy-
sis. Here we simply remark that the frequency with which difficulties
occur depends on the method used. The Runge-Kutta method is very
reliable. Predictor-corrector solutions occasionaily break down. However,
the Adams method is the most reliable method of this type; anomalous
results seldom occur in problems of practical interest.

Occasionally a numerical solution may be unstable because of a pecu-
liarity in the differential equation and the initial conditions regardiess of
the computational method used. A simple heuristic discussion may clarify
this problem. Consider the differential Eq. 5-5. The analytical solution is

Differential
Equations

y=Ade*—x—1

where A is a numerical constant. Suppose that the initial condition is
y = —1 at x = 0. Then 4 = 0. However, if we carry out a numerical
evaluation and fit the analytical solution to the resulting points, we will
obtain a vaiue of A that is very small bui unoi identically zero. If the
numerical evaluation is continued to very large values of x, the spurious
exponential term eventually overshadows the legitimate terms, and the
solution breaks down.

5-2. Systems of Differential Equations; Second-Order Differential Equations

THE RUNGE-KUTTA METHOD

This method can easily be extended to simultaneous differential equations.
Consider the two simultaneous equations

Y= fale,yu)  w' = folx,y,u) (5-8a,b)

The Runge-Kutta formulas are

Ga) = fa (X5, Yjs 1)
go = Sfo (X5, ¥j» 45)

h h h
Go) = Ja <Xj +5’ Vi +E Ga oy 4 + ”i Qb(o))

h h h
Bdw =/ (xj ‘*‘“2“’ yi+ 5 Jeor +E Qb(m)
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h h h
Qa2 = fa (xj +‘2"’ Vi +5 da) U +5 %(n)

h h h
Q@ = fo (Xj +’2" Yi +‘2' Ga (1), Uj +E qb(l))

o)y = fa(Xj + B, i + hqaor, wj + hgy )
@ = fo(x + h, ¥ + hgaz), w4 + hgp )

h
YViti=y + 3 (Gair + 20y +2¢e + qa)

h
Ui+ =uj + p (@ + 20w+ 29+ gvm)

We proceed to write these equations directly in the condensed format.

For r = 0,1,2,3, the equations are
. r
(,(r)=5(3- r)+1

h
E(r) '—'E sgn r

Xy =x + Eq¢)
Yior=y + EwGac-1
U=t + Eagoo-1
Qo) = Ja Xy Yrr Ur))

@) = Jo(Xr) Yirn Uir)

3
S = 2 Cirgar)
r=0

3
So = Y Cirqoer)
7=0

hSg
Yit1=y; + 6

hS,
Uj+1 = Uj +—'6—b

A program follows for the two simultaneous equations

’

y=u u'=3u—2y+x

with the initial conditions

(5-92)

(5-9b)

(5-9¢)
(5-9d)
(5-9¢)
(5-9f)
(5-92)

(5-9h)

(5-9i)

(5-9))

(5-9k)

(5-10a,b)
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program of Sec. 5-1. The only thing new is that there are now two equation

%gig’gﬂ lines to be filled in by the user: lines 160 and 170. The data line 260,

10
20
30

40

50

60

70

80

90
100
110
120
130
140
150
160
170
180
190
200
210
220
230
240
250
260

which contains the initial values of x, y, and u, is also filled in by the
user.

REM: TWO SIMULTANEOUS FIRST ORDER D.E.'S (RUNGE-KUTTA)

READ X0,Y0,U0 Reads initial values.

PRINT "INITIAL VALUES:" Prints heading.

PRINT "X=";X0,"Y=";Y0,

HU____H;UO

PRINT Generates blank line.

INPUT "ENTER XN,N";XN,N Calls for values of x, and n.

H=(XN—X0)/N Calculates length of subinterval.

FOR J=0 TO N—1 1

SA=0

SB=0

FOR R=0 TO 3

C=R*(3—R)/2+1
=H/C*SGN(R)

X=X0+E

Y=YO+E*QA Analyzes | Analyzes

U=U0+E*QB - one . entire

QA=U increment. | interval.

QB=3*U—2*Y+X

SA=SA+C*QA

SB=SB+C*QB

NEXT R

X0=X

YO=YO+H*SA/6

Prints x,p,p'.

U0=UO0+H*SB/6

NEXT J )

GOTO 30 Returns for next interval.
DATA 0,1,1 Data line for initial values.

This program operates in exactly the same way as the Runge-Kutta pro-
gram of Sec. 5-1. Numerical results for y appear in the following table:

Vn Exact h=.1 h=.05
Xn

0.5 1.679570  1.679563  1.679570
1.0 3.097264  3.097222  3.097261
1.5 6.521384  6.521214  6.521373
2.0 | 15.399538 15.398921 15.399496

The exact solution
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1
y=z(e“+2x+3) 5-11)
is shown for comparison.

The foregoing program can be used to solve second-order differential
equations. In fact, by eliminating u from Egs. 5-10a,b, we find that we
have already solved the differential equation

Y =3y +2y=x (5-12)
with the initial conditions
x=0 y=1 y=1

If we are primarily interested in solving second-order differential equations
directly, the foregoing solution can be organized a little more neatly. Con-
sider the general second-order differential equation

y'=fxp.y") (5-13)

We reconcile this with Eqgs. 5-8a,b by setting y' = u = f; and f = f;.
Also gz = u, and ¢, may be denoted simply as q. We also let § = S,
and T = S,. Equation 5-9f now reduces to the identity u = u. The
other equations of the set (Eq. 5-9) become

Coy =5’(3 —nN+1 (5-14a)
o= 5-14b
o =csenr (5-14b)
Xy =X + Eq) (5-14¢)
Yo =yt Enug-n (5 -14d)
uUry=u + Exqge-v (5-14e)
9y = f(Xm, Yy Uery) (5-14f)
3
T= 2 Cimttry (5-14g)
r=0
3
§=3 Cirdw (5-14h)
r=0
hT .
Vi =yt (5-141)
hS
Uj+1 = Uj ‘f“g‘ (5'14j)

We have not replaced u by y’ because y' cannot be used as a program
variable in most versions of BASIC.
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10
20
30

(¥4
)

60

70

80

90
100
110
120
130
140
150
160
170
180
190
200
210
220
230
240
250

The program follows. It is organized in exactly the same way as
the first program of this section, except that now there is only one equation
line—line 160—to be filled in by the user. The data line 250, which contains
the initial values, is also filled in by the user.

REM: SECOND ORDER D.E. (RUNGE-KUTTA)

READ X0,Y0,U0 Reads initial values.

PRINT "INITIAL VALUES:" Prints heading.

PRINT "X=";X0,"Y=";Y0, . ,

"y =100 }Prmts x, y, y.

PRINT Generates biank line.

INPUT "ENTER XN,N";XN,N Calls for values of x, and #.

H=(XN—X0)/N Calculates length of subinterval.

FOR J=0 TO N—1 )

S=0

=0

FOR R=0 TO 3 ]

C=R*(3—R)/2+1

E=H/C*SGN(R)

X=X0+E Analyzes

Y=YO+E*U Analyzes

U=UO+E*Q [one . | entire
=3*U—2*Y+X merement: | interval.

T=T+C*U

S=S+C*Q

NEXT R J

X0=X

YO=YO+H*T/6

U0=U0+H*S/6

NEXT J J

GOTO 30 Returns for next interval.

DATA 0,1,1 Data line for initial values.

Numerical results are identical to those given in the table earlier in this
section.

THE ADAMS METHOD

Predictor-corrector methods can also be applied to systems of differential
equations or to higher-order differential equations. We consider the second-
order differential Eq. 5-13. The same Adams relations (Eq. 5-7) that connect
y with y' for a first-order equation now connect y with y' = u and u
with ' = f. The equations are

h
e =ty + 0 (555 = 59fj-1+ 37fi-2 = 9f;-o) (5-15a)

h
YVi+1= )i +a(quj+l+ 19uj -5u,--1+ u,'-z) (5-15b)
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10
20

30
40
50
60
70
80
90
100
110
120
130
140
150
160
170
180
190
200
210
220
230

h
Uj+1 = Uj +‘2"1(‘Iﬁ+1+ 19f; = 5fi-1+ fi-2) (5-15¢)

Equation 5-15a is a predictor equation; Eqs. 5-15b and 5-15c are corrector-
type equations. A predictor equation is not needed for y;+;. After a prelimi-
nary estimate of w4+, is obtained from Eq. 5-15a, an accurate value of
yj+1 is obtained directly from Eq. 5-15b. The value of f;+, is then found
from the subroutine for Eq. 5-13, and an accurate value of u;+; is obtained
from Eq. 5-15c.

The program follows. It is organized in the same way as the second
program of Sec. 5-1. One new problem is worth mentioning. Because of
Eq. 5-15b, it is necessary to store the last few us as well as the fs. This
is done in line 260 of the program. The values of the fs and us are
reassigned on the Runge-Kutta cycles j = 0,1,2. However, the last Runge-
Kutta cycle j = 3 is incomplete; it calculates a new value of f, but no
new u or y. Therefore only the value of f is reassigned on the last Runge-
Kutta cycle; the other reassignments are skipped by line 250. The program
operates in exactly the same way as the Adams program of Sec. 5-1.
Two lines are filled by the user: the subroutine 410, which is the differential
equation, and the data line 430, which contains the initial values. As
the program stands, these lines contain the same differential Eq. 5-12
and initial conditions that were used for the Runge-Kutta program.

REM: SECOND ORDER D.E. (RUNGE-KUTTA & ADAMSYS)
READ X0,Y0,U0 Reads initial values.
PRINT "INITIAL VALUES:

—1:X0,"Y=":Y0,"Y '=":U0 Prints initial values.

PRINT Generates blank line.

INPUT "ENTER XN,N";XN,N Calls for values of x, and n.
H=(XN—X0)/N Calculates length of subinterval.
FOR J=0 TO 3 ]

T=0

S=0

FOR R=0 TO 3

C=R*(3—R)/2+1
E=H/C*SGN(R)

X=XO0+E

Y=Y0+E*U

U=UO0+E*Q

GOSUB 410

IF R=0 THEN 240

T=T+C*U

S=S+C*Q

NEXT R

X0=X

YO=YO+H*T/6

U0=UO-+H*S/6

NEXT J )

+ Runge-Kutta loop.




240 F3=F2:F2=F1:F1=F0:F0=Q
250 IF J=3 THEN 290

260 U2=U1:U1=U0:U0=U Reassignments.
270 YO=Y
280 IF J<3 THEN 170 Controls execution.
290 J=J+1 ]
300 U=UO0+H*(55*F0—59*F1+37*F2—9*F3)/24
310 Y=YO+H*(9*U+19*U0—5*¥U1+U2)/24 Adams
320 X=X+H Floop
330 GOSUB 410 ’
340 U=U0+H*(9*Q+19%FO0—5*F1+F2)/24
350 IF J<N THEN 240 J
360 PRINT "X=";X,"Y=";Y, } .
- Prints results.
"Y'—";U
370 PRINT Generates biank iine.
380 INPUT "ENTER N: ;N Calls for new value of 7.
390 N=J+N Adjusts value of n.
400 GOTO 240 Returns for next interval.
410 Q=3*U—2*Y-+X Subroutine.
420 RETURN RETURN statement.
430 DATA 0,1,1 Data line for initial values.

Numerical results appear in the following table. Exact results from Eq.

£ 11 _ o b B o an o aed gy
J-11 aiC€ S1OWIL 101 COLILpaiiduLlL.

y» Exact h=.1 h=.05
Xn

0.5 1.679570  1.679565  1.679570
1.0 3.097264  3.097153  3.097261
1.5 6.521384  6.520581  6.521360
2.0 | 15.399538 15.395600 15.399415

SINGULAR POINTS OF DIFFERENTIAL
EQUATIONS

We now consider the nonlinear differential equation

W,

x (5-16)

This is known as Emden’s equation; it occurs in astrophysics. (The expo-
nent of the second term on the right may be any positive number; we
have chosen the value 5 because there is a simple analytical solution for
this case that can be used to check the numerical evaluation.) The initial
conditions are

130 x=0 y=1 p'=0
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We may use either the Runge-Kutta program for second-order differential
equations or the Adams program. With the Runge-Kutta program, the
obvious revisions are

160 Q=—2*U/X —YA5
250 DATA 0,1,0

With these revisions only, the program does not work. There is an x in
the denominator of the first term on the right side of Eq. 5-16. The point
x = 0 is said to be a singular point of the differential equation, and this
causes a malfunction in line 160. Singular points often cause difficulty in
numerical solutions of differential equations, but in this case the trouble
can easily be corrected by a procedure similar to that used for integrals
in Sec. 4-1. We shall find the value of y'’ at x = 0 by an analytical
calculation, then insert this into the program and bypass the GOSUB
statement at this point. We refer to the differential Eq. 5-16. Since y’ =
0 when x = 0, the first term on the right is indeterminate. By applying
I'Hospital’s rule to this term and also using the fact that y, = 1, we
find that

'

” 3 y P 14 —_ 1
y8==2lim> — =2y — 1=~

We now amend the program to use this value and bypass the GOSUB
statement when x = 0. We add the following two lines:

65 Q=—1/3
155 IF X = 0 THEN 170

With the new lines 65, 155, 160 and 250, the program will work success-
fully. Numerical results can be checked against the analytical solution

3 1/2
y:(x2+3) (5-17)

There are various methods of dealing with singular points. Unfortu-
nately no one straightforward method is uniformly successful. However,
the foregoing procedure also works with the equation

4xy" +2y'+y=0 (5-18)

and the initial conditions
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The point x = O is a singular point. We observe that the term on the
right side of the equation is an indeterminate expression of the type
0/0. An application of 'Hospital’s rule leads to

e 4 Jo 2 '8 12
and the numerical evaluation follows directly.
It is sometimes possible to eliminate a singularity by a substitution.

Although it is by no means obvious, the appropriate substitution for Eq.
5-18 is x = t2. This transforms the equation into

—Z 4 y=0 (5-19)

This leads to an even simpler numerical evaluation than the first method.
Results obtained by either method can be checked against the analytical
solution

y=cos t =cos VX (5-20)

which follows from Eq. 5-19.

A third method of dealing with a singular point is to expand the
function into an infinite series. The procedure is discussed at length in
books on differential equations. It is more complicated than the methods
used here.

5-3 Fourth-Order Differential Equations

THE RUNGE-KUTTA METHOD

The solutions of Secs. 5-1 and 5-2 can be extended indefinitely to differential
equations of any order. Consider the general fourth-order differential equa-
tion

Y= flxp. 'y iyt (5-21)
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133 We denote the derivatives y’, y", and y'"’ by u, v, and w, respectively.
The Runge-Kutta equations are, for r = 0,1,2,3,

Differential
Equations n
E., =T2~ r(13—r(qg —2r)) (5-22a)
X(ry™= Xj + E(r) (5-22b)
Yo=Yyt Exmtg-1 (5-22¢)
ue =t + E¢)yVir- (5-22d)
Vi)=Y + E¢yWe-1 (5-22¢)
Wiy =w; + Eq)qe-1 (5-22f)
g = f(XrnYaentanVaenWae) (5-22g)
h 5-22h)
Yi+1 = ¥ +-5(u(0)+2u(1)+2u<2)+ u@) (
h , .
Uj+1 = Uj + g ('U(o) + 290 + 27)(2) + ?)(3)) (5-221)
h .
Visr =¥ + % (W +2way + 2w + wea) (5-22j)
h
Wi+ = w; + 3 (g + 290+ 292+ q3) (5-22k)

The present format differs slightly from those of Secs. 5-1 and 5-2. We
have calculated E ;) without first calculating C,), because the latter param-
eter is not used. We use Egs. 5-22a,d-f to rewrite Egs. 5-22h-k as

h h h
Yi+t1 =Y -+ h(ZJj + ”2‘ (’Uj + —3 (Wj +z q«»)))
h h
Uir1 = u; + h(vj -+ 3 (Wj + 3 (q(o) -+ C_I(n)))
h
Vi1 =0 + h(Wj + % <¢I<m +qa+ ‘hz)))
h
Wi+ = w; + s G t+2q90w + 292+ q)
Finally, we rewrite these in the form
p—1
S =3 g (5-23a)
r=0

h h h
}’j+1=yj+h<uj +E<'vj +"3'<Wj+7151>>> (5-23b)
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Vi1 =70 + h(wj +g Ss) (5-23d)
h oo« o e mn
Wi+ = w; + % (S4+ 83— Sy) (5-23e)

A program follows for the equation
yWV—2y"+3y" —5y'+3y=0 (5-24)
with the initial conditions
x=0 y=y=y'=y"=I

The program is organized in the same way as the earlier Runge-Kutta
programs, with the exceptions just noted. Two lines are to be filled in
by the user: the equation line 160 and the data line 260, which contains
the initial values.

1 REM: FOURTH ORDER D.E. (RUNGE-KUTTA)

10 READ X0,Y0,U0,VO,W0 Reads initial values.

20 PRINT "INITIAL VALUES:" Prints heading.

30 PRINT "X=";X0,"Y=",Y0,

"Y'=”;UO,"Y' '=";VO, Prints x, ¥, yl’yl |’ y| v
HY! 1 V:";WO

40 PRINT Generates blank line.

50 INPUT "ENTER XN,N":XN,N Calls for values of x, and n.
60 H=(XN-—X0)/N Calculates length of subinterval.
70 S(0)=0 Assigns value of So.

80 FOR J=0 TO N—1 . )

90 FOR R=0 TO 3
100 E=R*(13—R*(9—2*R))/12*H
110 X=XO0+E
120 Y=YO+E*U Analyzes
130 U=UO+E*V > one
140 V=VO+E*W increment.
150 W=WO0+E*Q Analyzes
160 Q=2*W—3*V+5*U—3%Y - entire
170 SR+1)=S(R)+Q interval.
180 NEXTR J
190 X0=X

200 YO=YO+H*(UOHH/2*(VO+H/3*(WO-+H/4*S(1))))
210 UO=UO+H*(VO-+H/2*(WO0+H/6*S(2)))

220 VO=VO+H*(WO-+H/6%S(3))

230 WO=WO-+H/6%(S(4)+S(3)—S(1))

240 NEXTJ J




135

250 GOTO 30 Returns for next interval.
260 DATA 0,1,1,1,1 Data line for initial values.

The program operates in exactly the same way as the earlier Runge-Kutta
programs. Numerical results for y appear in the following table:

xn\'&l Exact h=.1 h=.05

0.5 1.6487213 1.6487206 1.6487212
1.0 2.7182818 2.7182797 2.7182817
1.5 44816891 4.4816839 4.4816887
2.0 7.3890 561 7.3890 448 7.3890 554

The exact solution
y=e* (5-25)

is shown for comparison.

THE ADAMS METHOD

The Adams equations for a fourth-order differential equation are

h

Wi = wy 7 (55 = 59f-1+ 37fj-2 = 9fy-a) (5-26a)
h ”

Y=yt Owyer + 19w = Swioa + wi-o) (5-26b)
h

Uj+1 = U; +EZ(9VJ-+1+ 19v; — 5vj-1+ vj-2) (5-26¢)
h

Yit1=Y; +“2‘11 Ouj+1+ 194 — Suj—1 + uj-2) (5-26d)
h

Winr = wy + o O +195 = 5f-at+ fi-2) (5-26¢)

The first four equations give a rough estimate of wj+; and accurate values
of vj+1, 4j+1, and y;+1. After these results have been found, f;+; is evaluated
by the subroutine and an accurate value of wj:; is found from the last
equation.

The program follows. The first half is almost identical to the Runge-
Kutta program given earlier in this section, and the second half is organized
in the same way as the Adams programs of Secs. 5-1 and 5-2. The equation
subroutine 460 and the data line 480 are filled in by the user. As the
program stands, these lines contain the same differential Eq. 5-24 and
initial conditions that were used for the Runge-Kutta program earlier in
this section.



1  REM: FOURTH ORDER D.E. (RUNGE-KUTTA & ADAMS)

10 READ X0,Y0,U0,VO,W0 Reads initial values.
20 PRINT "INITIAL VALUES:

="-X0,"Y=";Y0,"Y'=";U0, }Prints initial values.

"y l___'l;VO’HY' ' |.._.u;w0

30 PRINT Generates blank line.
40 INPUT "ENTER XN,N";XN,N Calls for values of x, and n.
50 =(XN—X0)/N Calculates length of subinterval.
60 S(0)=0 ]

70 FOR J=0TO 3

80 FOR R=0TO 3

90 E=R*(13—R*(9—2*R))/12*H

100 X=XO0+E

110 Y=YO+E*U

120 U=UO+E*V

130 V=VO+E*W

140 W=WO+E*Q

150 GOSUB 460

160 IF R=0 THEN 250

170  S(R+1)=S(R)+Q

180 NEXT R

190 X0=X

200 YO=YO+H*(UO+H/2*(V0
+H/3¥(WO+H/4%3(1))))

210 UO=UO+H*(VO+H/2*(W0+H/6*S(2)))

220 VO0=VO-+H*(WO0+H/6*S(3))

230 WO=WO+H/6*(S(4)+S(3)—S(1))

240 NEXTJ J

250 F3=F2:F2=F1:F1=F0:F0=Q )

260 1IF J=3 THEN 320

270 W2=WLWI=W0:W0=W

280 V2=V1:VI=V0:V0=V

290 U2=U1:U1=U0:U0=U

300 YO=Y J

310 IF J<3 THEN 170 Controls execution.

320 J=J+1 )

330 W=WO+H*(55*F0—59*F1+37*F2—9*F3)/24

340 V=VO+H*(9*W+19*W0—5*W1+W2)/24

350 U=UO+H*(9*V+19*¥V0—5*V1+V2)/24

360 Y=YO+H*(9*U-+19*U0—5*U1+U2)/24 + Adams loop.

370 X=X-+H

380 GOSUB 460

390 W=WO+H*(9*Q-+19*F0—5*F1+F2)/24

400 IF J<N THEN 250 ,

410 PRINT "X=%X,"Y=1Y, }Prints results
IIY|=H;U, HY! |=H;V!||Y| 1 ':";W ) *

420 PRINT Generates biank line.

> Runge-Kutta loop.

r Reassignments.




430 INPUT "ENTER N: ;N Calls for new value of n.

440 N=J+N Adjusts value of n.

450 GOTO 250 Returns for next interval.
460 Q=2*W—3*V+{-5*U—3*Y Subroutine.

470 RETURN RETURN statement.

480 DATA 0,1,1,1,1 Data line for initial values.

Numerical results appear in the following table:

Exact h=.1 h=.05
% Yn xac

0.5 1.6487213 1.6487217 1.6487213
1.0 27182818 2.7182856  2.7182822
1.5 44816891 4.4816994 4.4816899
2.0 7.3890 561 7.3890 769 7.3890 578

Exact results from Eq. 5-25 are shown for comparison.

5-4 Boundary Value Problems
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In all the problems considered until now, all the required conditions on
y and its derivatives have been specified at one point (that is, one value
of the independent variable), which could be used as the starting point
for the numerical evaluation. Any problem involving a first-order differen-
tial equation is of this type, since there is only one condition to be satisfied.
However, when the differential equation is of second or higher order,
two or more conditions must be satisfied. If all the conditions are specified
at one point, the problem is known as an initial value problem. A problem
in which conditions are specified at two points is known as a boundary
value problem. The methods that we have considered apply directly to
initial value problems. To solve a boundary value problem, an extension
of the foregoing methods is necessary.

SECOND-ORDER DIFFERENTIAL
EQUATIONS

For a linear second-order differential equation, it is possible to solve a
boundary value problem by solving two initial value problems and then
using superposition, that is, linear interpolation. The easiest way to under-
stand the method is to consider an example. Suppose that we require
the solution of Eq. 5-12 that satisfies the boundary conditions

x=0 y=1 x=1 yp' =0
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and, in particular, we require the value of y at the point x = 1. We
guess two values of y; (say O and 1) and run calculations from one of
the programs of Sec. 5-2, using the correct starting values xo = 0 and
yo = 1 in both cases. Results from the Runge-Kutta program with 4 =
.05 appear in the first two rows of the following table:

Xo Yo » Xn Yn Yn
0 1 0 1 —1.573502 —7.865285
0 1 1 1 3.097261 4.194522
0 1 6521899 1 1.472723 0

The values of y; and y, in the third row are obtained by linear interpolation
in the first two rows. Thus

,_ 7.865285 _ 652189
P 7865285 + 4.194522

and

Yo =—1.573502(1 — .6521889) + 3.097261 - .6521889
=1.472723

It is not necessary to type in all the results from the first two rows
to obtain the final results. The values of y, = u, and y, are still in the
computer after the second run. The following simple exercise in the prompt
mode gives the desired results:

B=1/(1+U0/7.865285)
PRINT B

.6521899
A=—1.573502%(1—B)+Y0*B
PRINT A

1.472723

If the Adams program is used instead of the Runge-Kutta program, the
procedure is exactly the same except that the program variables for yp
and y, are U and Y—not UO and YO.

On most microcomputers it is possible to do the calculation without
retyping any numbers. After the first run, some convenient letters that
are not used in the program are assigned to y, and y,. Most computers
will set these equal to zero if the RUN command is used to start the
second run. However, with most computers it is possible to use GOTO
as an alternate command that does not lose the variables.

The final result is checked by running the program again, starting
with the correct initial values xp, yp, and yo. This leads to the resuit
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yn = 1.472723, which confirms the interpolation. It also agrees to the
full number of digits shown with the exact result, which is

_e(8+e)—3
T 426 — 1)

Ideally the value of y, should be zero, but some small nonzero result
will be found because of the error of the numerical approximation and
roundoff error.

In this example we have made the interpolations manually after
running the basic Runge-Kutta program twice. If results are desired for
a number of sets of input data, it may be advantageous to incorporate
the interpolations into the program.

This procedure is theoretically correct only for linear differential
equations. For a boundary value problem involving a nonlinear differential
equation, linear interpolation may be used to obtain a first estimate of
the result. This must then be refined by trial and error. One of the root-
finding methods of Chapter 2 may be combined with the Runge-Kutta
method or the Adams method.

FOURTH-ORDER DIFFERENTIAL
EQUATIONS

For a fourth-order differential equation, four conditions have to be satisfied.
If all these are specified at one point, we have an initial value problem
of the type considered in Sec. 5-3. If three conditions are specified at
one end of the interval and one condition is specified at the other end,
we take x = xo at the end where three conditions are specified. The
remaining boundary condition is handled in the same way as in the case
of the second-order differential equation just discussed. If two boundary
conditions are specified at each end, the analysis is a little more complicated.
The solution of the boundary value problem is obtained by superposition
of three initial value solutions. The procedure will be illustrated by an
example.

We require the solution of Eq. 5-24 that satisfies the boundary condi-
tions

x=0 y=1 y'=0 x=1 y"=0 p"=0

and, in particular, we require the value of y at the point x = 1. The
calculations are set out in the following table. The first three rows of
figures are obtained by running the Runge-Kutta program of Sec. 5-3
three times with the input data shown and A = .05. The fourth row is
obtained by superposition of the first two, and the fifth is obtained by
superposition of the first and third. The sixth row is derived from the
fourth and fifth.
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Problems

1rr "

Xo Yo Yo »' Yo Xn i In
o 1 0O 0 0 1 —2.679810 —6.808803
0 1 0 0 1 1 —.410209 —2.824123
0O 1 0 1 0 1 —3.234332 —9.934594
0 1 0 0 1.708745 1 1.198360 0
0 1 0 -2.178266 0 1 —1.471913 0
o 1 0 —977558 .941898 1 0 0

The final value of y, cannot be obtained by further interpolations
because we have not recorded intermediate values of y,. We run the pro-
gram again, using the initial values in the last line of the table as input
data. Then we find that y, = .702948, which is the desired result. We
also find that y, = —.414188. Ideally the vaiues of y; and yn' should
be zero, but some small nonzero values will be found because of the error
of the numerical approximation and roundoff error.

Solve the differential Eqs. 5-1 through 5-12 numerically at several points
for the specified initial conditions. (Analytical solutions are given to make
it easy to check the numerical results.)

1 x2 x 1
-1, ' = x2 0)=- =———4-
5-1. y'+2y=x y©O)=7 y=575%1
/ . 1 1 .
5-2. y'+ y=sinx y(O)Z—E y=£(smx-—cosx)
1
53. y'+2xy=x y0) =1 y="?:(1—e‘12)
1
5-4, y' +y=xp? 0)=1 =
yt+y=xy y(0) Y=
, _ 1 _ 1
5-5. y'+ x3(y — 3y%) =0 YO=3  y=Gmiram
5-6. y'+ ytan x =sin 2x yQ)=0 y=2cos x(1 — cos x)
2 + cos?
57. y'+(p2—Dtanx =0  p(0)=3 LT
2 —cos? x
y+1
58, y'=—— 0)=0 =
Y= »(0) y=x
y2—1 x+2
59, y' = 2)=. =
Y T Ya=8 =
5-10. xy' + =1 <
-1, xp'+y=1xp y(’_i Y=
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5-11.

5-12.

5-13.

5-14.

5-15.

5-16.

5-17.

1 1
'+ — 3 1 e e ——————
yTyExy yih=3 ENVTCE D))
1 1
14+ x2)y' + == 2 0) = - U ——
A+ x%)y"+ xy = xy y©O) =3 YE AT e

Modify the Adams program of Sec. 5-1 to obtain an iterative solution
of the corrector Eq. 5-7b as discussed under “Accuracy of Numerical
Solutions” in Sec. 5-1. Repeat the Adams solution of Eq. 5-5 with
two iterative cycles in the solution of Eq. 5-7b, and verify the numeri-
cal results shown below for A = .1. Compare these results with
the ones given in the table of Sec. 5-1 for the basic Adams method.
Observe that in this problem the iterative process yields no improve-
ment in accuracy; the error in solving Eq. 5-7b approximately is
of the same order as the inherent error in the equation itself.

Xn .5 1.0 LS 2.0
yn 1797443 3.436571 6.463401 11.778167

An analysis of the Adams method shows that the error of the cor-
rected result is approximately —19/251 times the error of the pre-
dicted result. Therefore the equation

yi+1=§:5/%)y§+1+%yf+1

tends to balance the errors of the predictor and the corrector and
give a result that is more accurate than either. (The superscripts P
and C refer to the predictor and the corrector, respectively.) The
value of the corrector must be an accurate solution of Eq. 5-7b.
Revise the program of Prob. 5-13 to include this equation, and use
the new program to repeat the solution of Eq. 5-5 and verify the
results shown below for 2 = .1. Observe that the new results are
better than the basic Adams results shown in the table of Sec. 5-1.

Xn 3 1.0 L5 2.0
yn 1797442 3.436563 6.463379 11.778116

Solve the differential Eqs. 5-15 through 5-22 numerically at several
points for the specified initial conditions. (Analytical solutions are
given to make it easy to check the numerical results.)

y'=3y'+2y=0 yo=1 y@0=1
y=er
y'+4y' +5y=0 y0)=0 yo=1

y=e2%Tsinx
y"'+3y' +2y=cosx yO)=.1 »@0)=.3

1
y 10( sin x + cos x)
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5-18. y" —xy'+2y =0 yO)=—1 p'0)=1
y=x2—1

5-19. y" + x2p —4xy =0 y(0)=0 y'(0)=4
y=x*+4x

5-20. y" — x2y + xy =x yO=1 y@©0)=1
v=x+1

5-21. yy" +y2+2y2=0 yO)=1 y(0)=0 x <—E

_ 1
/€08 2%

5-22. yy" +yr=1 y&=0 y =1
y=x

5-23. Solve Eq. 5-16, with its associated initial conditions, by using the
Adams program for second-order differential equations. Check the
results at a few points against Eq. 5-17.

5.24. Obtain a numerical solution of Eq. 5-18 with its associated initial
conditions by the first procedure suggested in the text. Check the
results at a few points against Eq. 5-20.

5.25. Show that Eq. 5-19, with its associated initial conditions, follows
from Eq. 5-18, with its associated initial conditions. Use this fact
to obtain a numerical solution of Eq. 5-18. Check the results at a
few points against Eq. 5-20.

5-26. Obtain a numerical solution of the differential equation
y 4+ +y=0

X
with the initial conditions
y@=1 y'0)=0
It can be shown that the analytical solution is a Bessel function,
y = Jo(x). Use the first table of Sec. 3-6 to check the numerical
results at a few points.

5-27. Obtain a numerical solution of the differential equation

! 1

x x
with the initial conditions

, 1

y©=0 »y©O=3
It can be shown that the analytical solution is a Bessel function,
y = Ji(x). Use the first table of Sec. 3-6 to check the numerical
results at a few points.

5-28. Obtain a numerical solution of the differential equation
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5-29.

5-30.

5-31.

5-32.

5-33.

yll+2_ .i,_._y—..

= ()
X 1—x2

with the initial conditions
Tr ’
YO =7 y©=0

It can be shown that the analytical solution is an elliptic integral,
y = E(x). Use the table of Sec. 3-4 to check the numerical results
at a few points.

Solve the differential Eqs. 5-29 through 5-32 numerically at several
points for the specified initial conditions. (Analytical solutions are
given to make it easy to check the numerical results.)

yWt3y"—4y=0 yoO=1 y@©0=0

in 2
YO=1 y©)=-5 y=er s
YW=+ 2" =2y'+y=0 yo=1 y@O=1
y"(0)=—1 y"0)y=-1 y =sin x + cos x
YA =3y —4y'+4y=0  p0)=0 y'(O)=1
y@=2 y)=3 y = xer
yV—2p"+y=4cos x y(0)=2 y'(0)=-—1
y'(0)=0 y"0)y=-1 y=e T+ cos x
Write a Runge-Kutta program to solve the four simultaneous first-

order differential equations

Y = fo(x,p,u,v,w) u' = fo(x,p,u,v,w)
v'=fc(x,y,u,v,w) W'Zﬁi(X,y,u,v,W)

Use the program to solve Eq. 5-24, and check the results against
those given in the text.
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6-1. Simultaneous Linear Algebraic Equations
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The solution of a set of simultaneous linear algebraic equations

anxi+ apxe+ auaxgt. . Guxa =y
021X1+(122X2+ 1123)C3+, ..t AonXn =— C2 (6‘1)
Am1X1 + GmaXa+ Amaxa +. + AmnXn = C3

is one of the most frequently occurring problems in applied mathematics.
In this section we consider one very straightforward and reasonably efficient
method of solution—the Gauss-Jordan method. The procedure will be
introduced by an example. Consider the set of equations

5%, —2x2+ 3x3=-—2 (6-2a)
—2x;+Txs+ Sx3 =7 (6-2b)
3x,+5x,+6x3=9 (6-2c)

We start by dividing through the first equation to make the coefficient
of the leading term unity. We then add or subtract appropriate multiples
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of the resulting equation to eliminate the leading terms of the other equa-
tions. These operations constitute the first cycle of the solution. At the
end of the first cycle, we have

X1 .4X2 + .6X3 =—4
6.2X2 -+ 6.2X3 =6.2
6.2x5 +4.2x53=10.2

Throughout this chapter we use matrix notation. For the present,
this simply amounts to writing the equations with detached coefficients;
matrix algebra will not be introduced until the next section. We represent
Egs. 6-2 by the matrix

5 =23 | —2
-2 |
3056 1 9

We have included both the square matrix of the as and the column matrix
of the cs in a single matrix, separated by a dotted line. A matrix of this
type is sometimes known as an augmented matrix. At the end of the
first cycle, the matrix becomes

1 —4 6 i —4
0 62 62 | 62
0 62 42 | 102

During the arithmetical operations, the first row is known as the pivotal
row. The element that divides the row (5) is known as the pivotal element
or the pivot.

Our objective is to reduce the square matrix to a diagonal matrix
of unit elements. For the second cycle we use the second row as the
pivotal row; that is, we normalize the second row by dividing through
by the element in the second column and then use the resulting row to
reduce the elements at the top and bottom of the second column to zero.
The result is

10 140
01 1 i1
00 —2 | 4

For the third cycle we normalize the third row and use the result to
clear the remaining elements of the third column. The result is

100 | 2
010 | 3
001 | —2
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The problem is now solved. The last matrix represents the equations

x1=2
XZ=3
X3=“‘2

which are the desired results.

We now consider the general problem of solving a set of n simultane-
ous linear algebraic equations in n unknowns. In other words, we shall
write a program to solve Egs. 6-1. We denote the general coefficients by
a;; and ¢;. The subscripts i and j are the row number and column number,
respectively, of the mairix elemeni. The usual practice is to number the
subscripts from 1 to n. However, most versions of BASIC allow only
the upper limit to be dimensioned. Storage space is set aside for an array
of numbers with subscripts running from O to the upper limit. If the
subscripis actually start at 1, one row and one column of siorage space
are wasted. To make the most efficient possible use of the computer storage
space, we shall run the subscripts from O to n — 1 in the program. We
also number the cycles from k = 0 to k = n — 1. Also, for the sake of
an efficient program, we shall denote the constants ¢; as a;,. Since the
same operations are performed on the cs as on the as, we then need
only one set of instructions.

The program follows. Line 1 is the title. Line 10 assigns the value
of i, and line 20 is a DIMension statemcnt. Lincs 30 through 130 read
and print the values of the as and cs. The only lines that require any
comment are 80 and 90. These generate a gap in each row between @in-1
and a;, = ¢;. Thus the A and C matrices are separated in the display
or printout. Lines 140 through 220 constitute a loop that solves the set
of simultaneous equations. This segment is the core of the program; every-
thing else is concerned with the organization of the data and the printout.
The operation of this segment may be made a little more clear by imagining
the following lines to be inserted:

162 NEXTJ
164 FOR J=N TO K STEP —1

Lines 150 through 162 now constitute a loop that normalizes the pivotal
row [ = k. The calculations run from right to left so that the pivotal
element is not reduced to unity until the last step; otherwise the other
divisions would be meaningless. Lines 164 through 210 constitute a nested
loop that adjusts the other rows to set the elements in the column j =
k equal to zero. The entire operation is repeated by lines 140 and 220
for the required number of cycles. The loops of lines 150 through 162
and of lines 164 through 210 may be combined by deleting lines 162
and 164, and this has been done in the program. Lines 230 through 270
print the resuiting values of the xs. Lines 280 through 300 are the data
lines; these contain the coefficients for Egs. 6-2.
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1 REM: SIMULTANEOUS EQUATIONS

10 N=3 Assigns value of n.

20 DIM A(N—L,N) DIMension state-
ment.

30 PRINT I

40 PRINT "THE A AND
C MATRICES ARE:"
50 FOR I=0 TO N—1
60 FOR J=0 TO N
70 READ A(LJ .
80 IF J<N ”IgHE)N 100 | Reads and prints
90 PRINT " matrix elements.
100 PRINT A(LJ);
110 NEXT]J
120 PRINT
130 NEXT I J
140 FOR K=0 TO N—1 )
150 FOR J=N TO K STEP —1
160 A(K,D)=A(K,J)/AK,K)
170 FOR I=0 TO N—1 .
180 IF I=K THEN 200 }Solveg simultaneous
190 A(LD=ALI)~AK,I*ALK) equations.
200 NEXT I
210 NEXTJ
220 NEXT K )
230 PRINT 1
240 PRINT "THE X MATRIX IS:"
250 FOR I=0 TO N—1 [Prints results.

260 PRINT A(L,N)

270 NEXT I

280 DATA 5,—2,3,—2

290 DATA —2,7,5,7 }Data lines.
300 DATA 3,5,6,9

To operate the program, line 10 is filled in by the user. The data lines
at the end of the program are also filled in by the user. For clarity, we
have used one data line for each row of coefficients in the equations.
These may be combined if the user prefers. This program runs on almost
any commonly used model of microcomputer as it stands, with the possible
exception of two lines. Some computers do not allow a variable to be
used as the argument in a DIMension statement. With any computer of
this type, numbers must be used inside the parentheses in line 20. The
most convenient way to do this is to insert some large numbers and leave
them permanently, instead of inserting the true values of n — 1 and n
each time the program is run. (Another possibility is to simply omit the
DIMension statement; the computer automatically allows enough space
for a set of ten equations.) Also, some computers such as the Apple do
not automatically generate leading and trailing spaces with numerical out-
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put. For any computer of this type, the expression “  *’; must be appended
to line 100.
When the program is run, the display appears as follows:

THE A AND C MATRICES ARE:

5 =2 3 —2
—2 7 5 7
3 5 6 9

THE X MATRIX IS:
2

-2

With larger matrices, each row may occupy more than one line on the
screen or printout. In this case it may be desirable for clarity to print
blank spaces between rows. This can be accomplished by inserting PRINT
statements as lines 55 and 255.

It is possible to simplify the input slightly. Inspection of the A matrix
shows that the coefficients satisfy the relation a; = @;;. The matrix is
said to be symmetric, and it may be written in the form

[ 5 -2 3 .l [ s -2 3 'i
-2 7 3)= 7 5
i_ 3 5 6 _i { Sym. 6 J
The vast majority of matrices that occur in the solution of physical prob-

lems are symmetric. Therefore it is seldom necessary to enter a full set
of coefficients in the data lines. The program may be amended as follows:

62 IF J<I THEN 74
72 GOTO 80

74 AQD=AQ,D)
280 DATA 5,-2,3,—2
290 DATA 7,5,7

300 DATA 6,9

The amended program bypasses the READ statement for elements below
the diagonal and obtains values from symmetry. The data line 280 is
identical to the original, but lines 290 and 300 are shorter.

As a second example, consider the equations

x1+2x2+x3=9 (6'33)
2x,+4x,+ 3x3=16 (6-3b)
X1+ 3xg+6x3=23 (6-3¢)

We start with the matrix
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1214 9
2 4 3 16
13 61 3

The first cycle leads to

12141 9
001 —2
015 i —6

It is apparent that the present procedure cannot be continued without
some modification. The pivotal element for the second row is zero. An
attempt to normalize this row would require a division by zero. We can
easily get around the difficulty by interchanging the last two rows. Thus

1214 9
015 i —6
001 i —2

The second cycle now leads to

—

10 =9 i 21
01 5§ —6
00 1 i —2

After the third cycle, we have

100 | 3
010 | 4
001 | —2

The results are

X1=3
X2=4
X3=_2

We now amend Egs. 6-3 to read:

x1+2x,+x3=9 (6-4a)
2x;+4x,+ 3x3=16 (6-4b)
X1+ 2x2+2x3=7 (6-4c)

We start with the matrix
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1214 9
24 3| 16
12 21 7

The first cycle leads to

121§ 9
00 1| —2
00 1§ —2

It is impossibie to continue, because both of the available pivotal elements
in the second column are zero. This means that the equations are not
linearly independent. We can easily see that Eq. 6-4b is the sum of Egs.
6-4a and 6-4c. No solution (or at least no unique solution) can be found.
It is clear that x3 = —2, but x; and x, are indeterminate. It can be
shown that this situation occurs if, and only if, the determinant of the
matrix is equal to zero. A matrix that has this property is said to be
singular.

The difficulties in the solutions of Egs. 6-3 and 6-4 occurred when
zero elements appeared on the diagonal in pivotal positions. In most physi-
cal applications this difficulty does not occur. The occurrence of a singular
matrix such as that of Egs. 6-4 in the solution to a physical problem
means that there is some defect in the formulation of the solution. However,
there are a few real problems in which the situation of Egs. 6-3 can occur.
A segment follows that may be inserted into the earlier program to allow
for zero elements on the diagonal. At the same time that we allow for
zero elements on the diagonal, the accuracy of the calculation can be
enhanced slightly by adopting a broader viewpoint. The presence of any
very small number in a pivotal position—even if not identically zero—
causes a loss of accuracy in the calculations. The optimum result is obtained
by shuffling the rows in each cycle in order to bring the available element
with the greatest absolute value into the pivotal position.* The following
segment does this.

141 Z=K )
142 Y=ABS(A(K,K))

143 IF K=N—1 THEN 149
144 FOR I=K+1 TO N—1

- Fi i .
145 IF ABS(A(L,K))<=Y THEN 148 Finds largest pivot

146 z=1
147 Y=ABS(A(LK))
148 NEXT I )

* For completeness, we point out that this rule is not quite rigorous. The choice of pivot
can be changed arbitrarily by multiplying through one of the equations by some large number,
even though this makes no fundamental change in the problem. Nevertheless, the present
rule gives good results in practical problems. More comprehensive discussions of pivoting
strategies can be found in books on numerical analysis, such as reference 10.
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149 IF Y>10A—7 THEN 153 1
150 PRINT Terminates calculation
151 PRINT "THE A MATRIX IS ¢ if matrix is singular.
SINGULAR."
152 END J
153 IF Z=K THEN 159 )
154 FOR J=K TO N
155 T=AK.,))
156 AK,J)=A(ZJ)
157 A(Z,))=T
158 NEXTJ )
159 FOR J=N TO K STEP-1 Formerly line 150.

~ Rearranges rows.

The constant in line 149 must be adjusted to fit the accuracy of the com-
puter. This allows for the fact that a calculated result that should be
exactly zero may have some small nonzero value due to machine error.
We adopt the same rule here as in Sec. 2-5: Any result that differs from
zero only in the last two digits of the calculation is assumed to be exactly
zero. The constant 1077 is suitable for typical microcomputer accuracy
of nine digits. For the TRS-80, with seven-digit accuracy, the constant
should be 1075. For the TI-99/4, with thirteen-digit accuracy, a value of
101! may be used.

With the data of Egs. 6-2, the amended program gives the same
results as the original program. For the data of Eqs. 6-3, we revise the
data lines to read

280 DATA 1,2,1,9
290 DATA 2,4,3,16
300 DATA 1,3,6,3

The results are the same as those found previously by carrying out the
algebra: x, = 3, x; = 4, x3 = —2. With the data of Egs. 6-4, the program
prints

THE A MATRIX IS SINGULAR.

Systems of equations of the type

d1)€1+ €1X2 =
(12X1+ de2+ €aX3 = C2g
03X2+ d3X3 -+ €3X4 = C3 (6"5)

asxsz+ dyxy+ esxs = cy
AsXy + d5X5 = Cs

occur in a number of physical applications. The coefficient matrix contains
only three diagonals of nonzero elements. Equations of this type are said
to have a tridiagonal matrix. We could, of course, use the Gauss-Jordan
program given earlier, but this procedure would be very inefficient because,
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for a large system of equations, most of the memory and most of the
arithmetical operations would be devoted to zero elements. We shall use
a different procedure for which the new notation is particularly suitable.

We start by using the last equation to eliminate the last term on
the left side of the next-to-last equation. We then work our way upward
through the set, applying the same process to each equation in turn. This
leads to the following set of equations:

dix; = ¢
aoxi+ daxg =y
a3xg+ d3xs = c3 (6-6)
auxg + dixy =4 |

asxs+ dixs = cs

The new parameters di and ¢; are given by the equations

€id; +1

di =di——
di s

o = €iCi +1
P TG T
di+

The value of x, is now found directly from the first equation of the set
6-6. We then substitute this result into the second equation and solve
for x,. In the same way, we work our way downward through the set.
Each result x; is found with the help of the last prior result x;-;. The
results are printed as they are found. The general formula is

X = € T diXi—
di

Sets of equations like Egs. 6-5 that originate in physical problems almost

invariably have symmetric matrices, that is, & = di+1. Therefore we do

not need to enter both the as and the es. We shall work with the as.

Then the three foregoing equations become

2
ai+1
df =di ——
i+1
e =c Qi +1Ci+1
P =G T,
di+
’
C T AiXi—1
X; =
di

A program follows. It is set up to evaluate Eqs. 6-5 with
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d1=d2=d3=d4=d5=2
Ay =az=a4=as=—1
C1=6, C2=C3=C4=(,'5=0

Line 1 is the title. Line 10 assigns the value of n, the number of equations.
Lines 20 through 40 are DIMension statements. To take advantage of
the full capacity of the computer, we again run the subscripts from 0 to
n — 1. The loops of lines 50 through 70, 80 through 100, and 110 through
130 read the ds, as, and cs. The loop of lines 140 through 170 transforms
Eqgs. 6-5 into Egs. 6-6. The loop of lines 180 through 210 evaluates the
xs and prints the results as they are found. Lines 220, 230, and 240 are
the data lines for the ds, as (or es), and cs.

1

10
20
30
40
50
60
70
80
90
100
110
120
130
140
150
160
170
180
190
200
210
220
230
240

REM: SIMULTANEOUS EQUATIONS WITH TRIDIAGONAL
MATRIX

N=5

DIM D(N—1)
DIM A(N—1)
DIM C(N—1)
FOR I=0 TO N—1
READ D(I)
NEXT I

|
|
|

DIMension statements.
Reads ds.

READ A(D) Reads as.
NEXT I

FOR I=0 TO N—1

READ C(I)

NEXT I

FOR I=N—2 TO 0 STEP —1
DI)=DI)—AJI+1)*A(I+1)/DI+1) Calculates coefficients
CH=C(ID)—AI+1)*CI+1)/DI+1) ( of Egs. 6-6.

NEXT I )
FOR I=0 TO N—1 A
X=(C(D-AD*X)/D) Calculates and prints xs.
PRINT X f

NEXT I )
DATA 2,2,2,2,2 }

Reads cs.

DATA —1,—1,—1,~1 Data lines.

DATA 6,0,0,0,0

The results are

x1=5 X2=4 X3=3 X4:2 X5=1

To operate the program, line 10 is filled in by the user. The data lines
at the end of the program are also filled in by the user. These are organized
differently from the data lines in the earlier program; each data line repre-
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, for the ds and cs have n entries each. Line 230 for the as (or es) has
g;‘ﬂﬁ:ﬁ;ﬁg n — 1 entries. The same remark about the DIMension statements that
Equations  followed the earlier program applies here also. This program does not
print the original matrices. However, the coefficients can easily be obtained
by listing the data lines.

The coefficients in systems of equations of this type usually follow
a repetitive pattern. For a very large set of equations it is sometimes
more convenient to generate the coefficients by equations instead of filling
in a large amount of data. To do this for the present problem, we delete

lines 60 through 130, then insert the following lines:

60 D=2
70 A(D=—1
80 C()=0
90 NEXTI
100 C(0)=6
110 A(0)=0

The data lines may also be deleted. The results are identical to those
given by the original program.

6-2. Mairix Aigebra

This section is concerned with elementary matrix algebra. Most readers
are probably familiar with elementary matrix nomenclature and operations,
and we have used a few simple matrix representations in Sec. 6-1. However,
we shall give a brief outline of the essential points. A matrix is a rectangular
array of elements arranged in rows and columns, usually enclosed in brack-
ets. In this book a matrix is denoted by a capital letter. The elements
are denoted by the same letter in lower case, with subscripts to indicate
the row and column. Thus

ay a2 diz
A=1 a az ax

a3y A3z dadss

is a matrix. The general element is a;;, where i is the row number and j
is the column number. A matrix with m rows and n columns is known
as an m X n matrix. Practical applications are usually concerned with
square matrices (m = n), column matrices (n» = 1), and row matrices
(m = 1). A square matrix is said to be symmetric if and only if all of
the elements satisfy the equation a;; = aj;. The group of elements [ = j
of a square matrix is known as the diagonal or the principal diagonal.
A square matrix in which all off-diagonal elements are equal to zero is
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known as a diagonal matrix. A diagonal matrix with all diagonal elements
equal to one is known as a unit matrix or an identity matrix. It is usually
denoted by the symbol 1.

The statement that two matrices are equal, that is,

A=B
means that they have the same number of rows, the same number of
columns, and that corresponding elements are equal, that is, all elements
satisfy the equation
a;; = bij

Two matrices may be added provided that they have the same number
of rows and the same number of columns. Each element of the resulting
matrix is the sum of the corresponding elements of the original matrices.
Thus the statement that
S=A+B

means that all elements satisfy the equation

Sij = Qi -+ bij

It is clear that matrix addition is commutative, that is,
A+B=B+4

and that it is associative, that is,
A+B)+C=A4+B+0C)

Two matrices may be multiplied, provided that the number of col-
umns of the first is equal to the number of rows of the second. (Two
matrices that satisfy this requirement are said to be conformable in the
order given.) The product has the same number of rows as the first matrix
and the same number of columns as the second. Let 4 be an m X n
matrix and B be an n X ¢ matrix. Then the product

P=A4B

is an m X g matrix. We say that B is premultiplied by 4 or that 4 is
postmultiplied by B. The elements of P are given by the equation

n
Pii = X aixby
k=1
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For example

5 =2 313 2 1 14 8 10
-2 7 51{|2 4 2}=113 34 27 6-7)
3 56 1 2 3 25 38 31

Matrix multiplication is not generally commutative. In fact, it is
not possible to carry out both multiplications AB and BA unless the ma-
trices are conformable in either order. Even in this case, the products
AB and BA are not usually equal. For example,

5 — 31 T 13 25

3 2 1
2 4 24l-2 7 5]=| 8 34 38 (6-8)
1 2 3JL 3 5 6J i0 27 31y

which is not the same as the preceding result. It can also be seen that
the product of two symmetric square matrices is in general not symimetric.

We state two other results that will be needed subsequently. Matrix
multiplication is associative, that is,

(AB)C = A(BC)

If any mairix is premultiplied or postmultiplied by the conformable unit

matrix, the result is identical to the original matrix. Thus
I4=4 Al = A (6-9a,b)

However, the I matrices in these equations are not the same. They are
of different sizes unless the A4 matrix is square. If the 4 matrix is square,
the Is are the same, and this case is an exception to the general rule
that matrix multiplication is not commutative.

We will need another matrix operation: transposition. The transpose
of a matrix is the matrix obtained by interchanging its rows and columns,
and is denoted by the superscript 7. Thus, for example

2 7|7

2 5 4
5 3] =

7 3 1
4 1

It is clear that the transpose of a transpose is the original matrix.
In general, let A bean m X n matrix. Then

B=AT

is an 7 X m matrix, and the elements of the two matrices are relate
by the equation
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a;; = bji

It follows from the definition of matrix multiplication that the transpose
of a product is equal to the product of the transposes in reverse order,
that is,

(AB)T = BTAT

It is clear that the transpose of a symmetric square matrix is identical
to the original matrix. Hence if 4 and B are symmetric square matrices,
we have

(AB)" = BA

Equations 6-7 and 6-8 provide an example of this result.

Many large computers have built-in programs for the most important
matrix operations. However, few if any microcomputers have this feature,
so we shall develop several programs. The one that follows evaluates the
matrix product AB, where 4 is an m X n matrix and B is an n X ¢
matrix. Line 1 is the title. Lines 10, 20, and 30 assign the values of the
matrix dimensions m, n, and q. Lines 40 through 60 are DIMension
statements. To save space in the computer memory, we run the subscripts
from 0 to m — 1, n — 1, and ¢ — 1. Lines 70 through 150 read and
print the values of the as. Lines 160 through 240 do the same thing for
the bs. Lines 250 through 360 calculate and print the elements of the
product matrix. The data lines at the end contain the values of the as
and bs for Eq. 6-7.

1 REM: MATRIX MULTIPLICATION
10 M=3
20 N=3 } Assigns matrix dimensions.
30 Q=3
40 DIM AM—1,N—1)
50 DIM B(N—1,Q—1) } DIMension statements.
60 DIM P(M—1,Q—1)
70 PRINT )
80 PRINT "THE A MATRIX IS:"
90 FOR I=0 TO M—1
100  FOR J=0 TO N—1
110 READ A(L)J) r Reads and prints as.
120 PRINT A(LJ);
130 NEXTJ
140 PRINT
150 NEXT I J
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160 PRINT )
170 PRINT "THE B MATRIX IS:"
180 FOR I=0 TO N—1

190 FOR J=0 TO Q—1

200 READ B(1J) + Reads and prints bs.
210 PRINT B(LJ);
220 NEXTJ

230 PRINT

240 NEXT 1 J
250 PRINT

260 PRINT "THE PRODUCT AB IS:"
270 FOR 1=0 TC M—1

280 FOR J=0 TO Q—1

290 P(I)H)=0

300 FOR K=0 TO N-1 | Calculates and prints
310 PNH=P(1,J))+AIK)*B(K,J)) product matrix.

320 NEXT K

330 PRINT P(1,));

340 NEXTJ

350 PRINT

360 NEXT I J
370 DATA 5,23

380 DATA —2,7,5 } Data lines for as.
390 DATA 3,56

400 DATA 3,2,1

410 DATA 24,2 } Data lines for bs.
420 DATA 1,23

To operate the program, lines 10, 20, and 30 are filled in by the
user. The data lines at the end of the program are also filled in by the
user. We have used one data line for each row of the A matrix and again
for each row of the B matrix. It is not feasible to combine the data for
the two matrices row by row as in Sect. 6-1, because the two matrices
do not necessarily have the same number of rows. However, other con-
densed formats are possible; we might put all of the data for matrix A
in one line and all of the data for matrix B in another line. The program
verifies Eq. 6-7.

We repeat three remarks that followed the first program of Sec.
6-1. With some computers it is necessary to use numbers instead of algebraic
expressions in the DIMension statements of lines 40, 50, and 60. Also,
with computers that do not automatically print leading and trailing spaces
with numeric output, the expression “ ”; must be appended to lines
120, 210, and 330. Finally, with larger matrices, each row may occupy
more than one line on the screen or printout. In this case it may be
desirable for clarity to print blank spaces between rows. This can be accom-
plished by inserting PRINT statements as lines 95, 185, and 275.
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There is no operation of matrix division. However, for a nonsingular
square matrix (Sec. 6-1), there is a somewhat similar operation known
as inversion. The inverse of a square matrix 4 is known as A~ 1, and is
defined by the equation

AA-1 =1 (6-10a)

It can be shown that matrix multiplication is commutative in this special
case; it is also true that

A4 =1 (6-10b)

or that A is the inverse of 4~ 1.
The same Gauss-Jordan procedure that we used in Sec. 6-1 to solve
simultaneous equations can also be used to invert a matrix. Let us invert

(6-11)

N
Il
N W =

3
8
5

N

We start by writing the augmented matrix

N W e
oo W
S ;N
(= R
S - O
- O

The left half is the original matrix 4; the right half is the unit matrix 1.
We now apply the Gauss-Jordan process, performing the same operations
on the entire augmented matrix. For the first cycle, we use the first row
as the pivotal row. The result is

1 3 24{ 100
0 -1 -1 { =3 1 0
0 -1 0| —2 0 1

For the second cycle, we use the second row as the pivotal row. The
result is

10 ~-1{ -8 30
01 1§ 3 -10
00 14! 1 —11

Finally, after the third cycle
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1oof -7 2 1
o104} 2 0 -1
001 1 -1 1
The left half is now the unit matrix, and the right half is the inverse
matrix A~ 1. Thus the final result is
-7 2 1
A"1= 2 0 —1 (6-12)
1 —1 1

This result can easily be verified by multiplying the matrices 4 and
A-1, in either order. It can be proved that the method is valid in general,
but we shall confine ourselves to a simple heuristic observation. The effect
of the Gauss-Jordan operations on the 4 matrix is that of a premultiplica-
tion by 471, and the same effect may be expected on the I matrix. Therefore
the result is 47!

A critical review of the foregoing process shows that it is extremely
inefficient. We have carried 2n = 6 columns of the augmented matrix
through the entire calculation, but only n + 1 = 4 columns are ever
used at one time. In the first cycle we use only the first four columns,
in the second cycle we use only the middle four, and in the third cycle
we use only the last four. The remaining n — 1 = 2 columns take up
useless storage space and running time. We now give an improved proce-
dure, again starting with Eq. 6-11. To form the starting augmented matrix,
we use only the original matrix plus one column of the unit matrix, that
is,

132 11
38510
25410

We now use the Gauss-Jordan process to carry out the first cycle, using
the first row as the pivotal row. The result is

103 2 1
0f -1 -1 -3
0 -1 0 —2

We have shifted the separating line to show that it is now the last three
columns that are of interest. To start the second cycle, we discard the
first column and add the second column of the unit matrix. Thus
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|
_

|
—_

[
w2
—_

We again apply the Gauss-Jordan process, now using the second row as
the pivotal row. The result is

0 i —1 —8 3
1 1 3 -1
0! 1 1 =1

By this time the procedure is obvious. We start the third cycle with the
matrix

._.
w
|
-
o

0 -7 2 1
0 2 0 -1
11 -1

Finally we discard the first column and obtain a result that is identical
to Eq. 6-12.

A program for matrix inversion follows. It is very similar to the
first program for simultaneous equations in Sec. 6-1. Line 1 is the title.
Line 10 assigns the value of n, and line 20 is a DIMension statement.
Lines 30 through 110 read and print the values of the as. Lines 120
through 340 perform the inversion and print the result. The k loop of
lines 140 through 340 carries out the n cycles. The little i loop of lines
150 through 170 generates the last column of the augmented matrix to
start each cycle, using a relational expression. The j loop of lines 180
through 240 carries out one cycle of the inversion process; this is very
similar to the corresponding loop of the earlier program for simultaneous
equations. However, we now start the operations with the second column
J = 1, since the first column j = 0 will be discarded to start the next
cycle. The loop of lines 250 through 330 shifts all the elements one step
to the left at the end of each cycle. It also prints the results after the
last cycle k = n. The data lines at the end contain the elements of the
matrix. Each line represents one row of the matrix.
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1 REM: MATRIX INVERSION
10 N=3 Assigns value of n.
20 DIM A(N—1,N) DIMension statement.
30 PRINT )
40 PRINT "THE ORIGINAL

MATRIX IS:"
50 FOR I=0 TO N—1 Reads and prints
60 FOR J=0 TO N—1 - elements of
70 READ A(LJ)) original matrix.
80 PRINT A(J);
90 NEXTJ
160 PRINT
110 NEXT I
120 PRINT
130 PRINT "THE INVERTED
MATRIX IS:"
140 FOR K=0 TO N-—1
150 FOR I=0 TO N—1
160 A(I,N)=ABS(I=K)
170 NEXT I

last column

Generates
} of augmented

180 FOR J=1 TO N | matrix.

190 A(K,D)=A(K,J)/A(K,0)

200 FOR I=0 TO N—1 e

210 IF I=K THEN 230 wrihie

220 A(LN=A(LI)—A(K,J)*A(L,0) of Imversion.

230 NEXT I | Inverts
240 NEXT J ) matrix.
250 FOR I=0 TO N—1 )

260 FOR J=0 TO N—1

270 ALY)=A(LJ+1) Shifts

280 IF K<N—1 THEN 300 numbers

290 PRINT A(L)); L to left;

300 NEXT1J prints

310 IF K<N—1 THEN 330 results.

320 PRINT

330 NEXT I )

340 NEXT K J

350 DATA 1,32 Data lines

360 DATA 3,8,5 for matrix

370 DATA 2,54 elements.

To operate the program, line 10 is filled in by the user. The data
lines at the end of the program are also filled in by the user. We have
used the matrix of Eq. 6-11 as an example. Each data line represents
one row of the matrix. The result verifies Eq. 6-12. If spaces are needed
between the elements in the display, the expression “ ”’; may be appended
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to lines 80 and 290. If spaces are desired between the rows, PRINT state-
ments may be inserted as lines 55, 135, and 325.

The accuracy of a matrix inversion depends on the accuracy of the
computer. An inversion can be checked very easily by reinverting the
result and comparing it with the original matrix. With most computers
this can be done manually after the program is run by pressing the ENTER
key, then entering GOTO 140. As an alternative, the following lines may
be incorporated into the program:

350 R=R+l1

360 IF R>1 THEN 400

370 PRINT

380 PRINT "THE REINVERTED MATRIX IS:"
390 GOTO 140

400 END

The data lines must, of course, be renumbered.

The inversion of a matrix is seldom of interest in itself; it is usually
performed as an intermediate step in obtaining some other result. We
return to the simultaneous Eqgs. 6-1. These can be written in matrix form
as

Ax=cC (6-13)

and we wish to solve for X. We premultiply both sides by A4~ This
leads to

A~Y(AX) = A"1C

Since matrix multiplication is associative, the expression on the left side
may be rewritten as (47 *4)X. By Eq. 6-10b, this becomes IX, and, by
Eq. 6-9a, it becomes X. It follows that

X=4"1C (6-14)

This furnishes an alternative to the solution that we developed in Sec.
6-1. We can obtain X by inverting 4 and then postmultiplying the result
by C. At first glance this procedure seems pointless; it is longer and more
complicated than the one that we have already used successfully. Neverthe-
less, it is sometimes highly advantageous. In many applications, a single
A matrix is used repeatedly with a number of C matrices. The most
efficient procedure for a problem of this type is to start by inverting the
A matrix; the desired result for each C matrix is then obtained by multipli-
cation, which takes very little computer time.
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A program follows for the solution of simultaneous equations by

matrix inversion. Line 1 is the title. Line 10 assigns the value of n, and
the following three lines are DIMension statements. Lines 50 through
130 read and print the A matrix. Lines 140 through 300 invert it. The
C matrix is entered by the INPUT statement in lines 310 through 360.
(Line 330 requires a comment. The subscripts in the program start at 0,
but, as far as the user is concerned, they start at 1.) The product A=t C
is evaluated in lines 370 through 440, which also print the C and X matrices.
Line 450 sends the execution back to the INPUT statement to call for a
new set of c¢s. The last few lines are DATA statements; these represent
the rows of the A matrix of Egs. 6-2.

10

20

30

40

50

60

70

80

90
100
110
120
130
140
150
160
170
180
190
200
210
220
230
240
250
260
270
280
290
300

REM: SIMULTANEOUS EQUATIONS (MATRIX IN-
VERSION)

N=3 Assigns value of n.

DIM A(N—1,N)

DIM C(N—1) DIMension statements.
DIM X(N—1)

PRINT

PRINT "THE A MATRIX IS:"
FOR I=0 TO N—1

FOR J=0 TO N—i

READ A(L)) » Reads and prints as.
PRINT A(LJ);
NEXT J
PRINT
NEXT 1 J
FOR K=0 TO N—1
FOR I=0 TO N—1
A(I,N)=ABS(I=K)
NEXT I

FOR J=1 TO N
AKD=AK,I)/A(K,0)
FOR I=0 TO N—1

IF I=K THEN 230
ALND=ALH—AK,DH*A,0) r Inverts A matrix.
NEXT I

NEXT J

FOR I=0 TO N—1
FOR J=0 TO N—1
ALD=AWI+1)
NEXT J

NEXT I

NEXT K




165 310 PRINT
Matrices and 320 FOR I=0 TO N—1
Simultaneous 330 PRINT "I="I+1
Equations 340 INPUT "ENTER C(I) ";C(I)
350 PRINT
360 NEXT I
370 PRINT "THE C AND X
MATRICES ARE:"
380 FOR I=0 TO N—1
390 X(I)=0
400 FOR J=0 TO N—1
410 XI)=XI)+ALIH*CI)

Calls for values of cs.

Calculates product
matrix X=4"1C;
prints C and X

420 NEXTJ matrices.

430 PRINT CI),X(I)

440 NEXTI J

450 GOTO 310 Returns for new input.
460 DATA 5,—2,3

470 DATA -2,7,5 Data lines for as.

480 DATA 3,5,6

To operate the program, line 10 is filled in by the user. The data lines
at the end of the program are also filled by the user. These represent
the as of Eq. 6-2. The c¢s are entered as input; ¢; = —2, ¢c3 = 7, ¢3 =
9. The results are the same as those found in Sec. 6-1: x; = 2, x; = 3,
x3 = —2. If spaces are needed between the elements in the display, the
expression “  ”’; may be appended to line 100. If spaces are desired between
the rows, PRINT statements may be inserted as lines 75 and 385.

6-3. Determinants

Determinants are not used as frequently as matrices; the methods of Secs.
6-1 and 6-2 for solving simultaneous equations are more efficient than
methods based on determinants. However, it occasionally happens that
a determinant must be evaluated. The best procedures are similar to that
given in Sec. 6-1 for solving simultaneous equations, and we shall use
some of the same examples. It is assumed that the reader is familiar with
the elementary properties of determinants.
We start with the determinant

5 —2 3
D=|-2 7 5 (6-15)
3

The evaluation is accomplished by reducing all the elements below the
diagonal to zero. To do so, we use the fact that any row—or any multiple
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of any row—may be added to any other row without changing the value
of the determinant. Using the first row as the pivotal row, we find that

5 -2 3
D=]0 62 62
[0 62 42]

Now using the second row as the pivotal row, we obtain the result

5 —2 3 i
D=0 62 62|
*!0 0o 2

The value of this determinant is the product of the diagonal elements.
To show this we expand by minors as follows:

D=5 62 62 =5-6.2/—2|=5-6.2(—2) = —62
- lo —9 ‘_' '| |—— ‘( )—

We also observe that the number of cycles is n — 1 = 2, where n = 3
is the order of the determinaiit.
As a second example, we consider the determinant

1 2
D=2 4 (6-16)
13

f= N FS

The first cycle leads to

)
l
o O -
—_ O N
N o= e

We now run into the same difficulty that occurred with the corresponding
matrix in Sec. 6-1: a zero pivotal element in the second row. Again, we
get around the difficulty by interchanging rows. This changes the sign
of the determinant, and we allow for this by changing the sign of one
row. Thus
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As a third example, consider

(6-17)

A~ O AN
W NN W
N = B

1
2
3
2

The first cycle leads to

1 2 3 1

00 o0 2
D =

00 -7 —2

00 -3 0

We have not yet cleared all the elements below the diagonal. Nevertheless
it is impossible to continue, because all the available pivotal elements in
the second column are zero. It can be shown that this situation occurs
only if the value of the determinant is zero, so the evaluation is completed
at this point. The result is D = 0.

A program follows. Line 1 is the title. Line 10 assigns the value of
n, the order of the determinant. Line 20 is a DIMension statement. To
save space in the computer memory, we run the subscripts from 0 to
n — 1. Lines 30 through 110 read and print the elements of the determinant.
Lines 120 through 340 clear the elements below the diagonal. (The segment
of lines 130 through 280 shuffles the rows when necessary to get rid of
zero pivotal elements—or small pivotal elements. For many applications
this segment may not be necessary.) Lines 350 through 380 calculate the
value of the determinant by multiplying the diagonal elements. Lines 390
and 400 print the result. The last few lines are data lines for Eq. 6-15.

1 REM: EVALUATION OF A DETERMINANT

10 N=3 Assigns value of n.
20 DIM A(N—1,N—1) DIMension statement.
30 PRINT )
40 PRINT "THE DETERMINANT

IS:"

50 FOR I=0 TO N—1
60 FOR J=0 TO N—1
70 READ A(LJ)

80 PRINT A(LJ):

90 NEXT J

100 PRINT

110 NEXT I )

$Reads and prints
elements of determinant.




168 120 FOR K=0 TO N—2 A
Matrices and 130 Z=K ‘
Simultaneous 140 Y=ABS(A(K,K))
Equations 150 FOR I=K+1 TO N—1 Finds
160 IF ABS(A(IK))<=Y THEN 190 (largest
170 Z=1 pivot.
180 Y=ABS(A(I,K))
190 NEXT I J
200 IF Y>10A—7 THEN 230 Terminates
210 D=0 calculation
220 GOTO 390 if D=0. Generates
230 IF Z=K THEN 290 . triangular
240 FOR J=K TO N—1 ;
250 T=A(K.,)) Rearranges matrix.
260 A(K,H)=A(Z)J) rOWS.
270 A(Z,J)="T
280 NEXTJ
290 FOR I=K+1 TO N—1 ]
300 FOR J=K+1 TO N—1 Clears
310 A@D)=AJ) elements
—AK,T)*A(LK)/AK,K) below

320 NEXT]J diagonal.
330 NEXTI J
340 NEXTK J
350 D=1 )
3.678 g?__%f;?l})o N-1 ¢ Multiplies diagonal elements.
380 NEXTI )
390 PRINT

400 PRINT "THE VALUE OF THE ; Prints results.
DETERMINANT IS ;D

410 DATA 5,—2,3

420 DATA -2,7,5 }Data lines.

430 DATA 3,5,6

To operate the program, line 10 is filled in by the user. The data lines
at the end are also filled in by the user. The result verifies the value
—62. If spaces are needed between the elements in the display, the expres-
sion “ ”’; may be appended to line 80. If spaces are desired between
the rows, a PRINT statement may be inserted as line 55. The same remarks
that were made in Sec. 6-1 apply here to the DIMension statement of

line 20 and the numerical constant in line 200.

6-4. Matrix Eigenvalues

We begin this section with a physical application. We consider the problem
of finding the natural frequencies of vibration of the system of springs
and masses sketched in Fig. 6-1.
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FIG. 6-1

The differential equations of motion are

d?u
—kuy + k(uz— ur)=m dt;
d?u
—k(us— u1) + k(us— uz) =3m dt22
d2
—k(uz — uz) — kuz=2m d;B

where u;, us, and uj are the displacements of the three masses from
their rest positions, m is a unit mass, k is the spring stiffness, and ¢ is
the time. We let

u = xeet  j=123

The parameter o is known as the angular frequency, and x; is the amplitude
of motion of the jth mass. The equations of motion now become

2x1 ™ Xa = AX; (6-18a)
—x;+2xs— X3 =3AXxs (6-18b)
—Xxg+ 2x3=2AX;3 (6-18¢c)
where
maw?
M

We wish to solve Egs. 6-18 for A. The most obvious (although usually
not the easiest) way to proceed is to work with the determinantal equation

@-»N -~ 0
-1 @-3) -1 |=o0 (6-19)
0 -1 @2-2)
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Expansion of the determinant by elementary algebra leads to the equation
6A3 — 22A2 + 2IA—4 =0

By using the program of Sec. 2-6, we obtain the three roots

A = .2528214993 1.180920530 2.232924637

This procedure is often used to solve a set of two equations, and is occasion-
ally used to solve a set of three equations. However, for large sets of
equations the algebraic labor is prohibitive. A second method is to solve
the determinantal Eq. 6-19 by the program of Sec. 6-3, finding all the
roots by trial and error. This procedure is also rather clumsy.

We now adopt a different approach. Equations 6-18 may be rewritten
in matrix form as

AX = ABX (6-20)
where
2 —1 0 1 0 0 X1
A=1]-—1 2 —1 B=1]10 3 0 X=1 % 6-21)
0 -1 2 0 0 2 X3

From the standpoint of the determinantal expansion, it is clear that the
solution of a set of n simultaneous equations for A is equivalent to the
solution of an nth degree polynomial equation. Hence there are n values
of A that will satisfy the equations. These roots are known as eigenvalues
or characteristic values. The corresponding values of the xs are known
as eigenvectors.

We shall obtain a solution by iteration. To do so, it is necessary to
have the X matrix alone on one side of the equation. There are two possible
ways to accomplish this. We may premultiply both sides by 4. Then
by the same exercise that led from Eq. 6-13 to Eq. 6-14, we find that

X = AGX where G = A"'B (6-22)
On the other hand, we may premultiply by B~! to obtain
AX = HX where H= B~ 4 (6-23)

For a reason that will become apparent subsequently, the first formulation
is usually preferable. By using either matrix algebra or the inversion pro-
gram of Sec. 6-2, we find that

1[3 2 1
AT1==]2 4 2
4

[123]
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It follows that
3
2 12 4
1

We have now reduced the problem to the problem of solving the
matrix equation

X1 }\ 3 6 2 X1

X2 zz 2 12 4 Xa

X3 1 6 6 X3
or equivalently
X1 p
T=.75x1 + 1.5x5+ .5x3 (6-24a)
X2
".;\‘=.5x1+3X2+X3 (6'24b)
%-—- 25%; + 1.5x5+ 1.5x3 (6-24¢)

To solve by iteration, we choose a set of values for the xs and substitute
it into the right sides of these equations. The simplest choice is x; = x,
= x3 = 1. The results are

x1 =275\ X =45\ x5 =3.25\A
We have a system of n equations in n + 1 unknowns—the n xs and A.
Any one of the xs may be assigned a value arbitrarily. We set x; = 1.

Then the results of the first iteration are

= .3636 x; =1 x2 = 1.6364 x3 = 1.1818
A second iteration leads to
=.2635 x;=1 xg = 1.7365 x3 = 1.1796
After repeated iterations, the solution eventually converges to
A =.2528214993
x1=1

x2=1.747178501
x3=1.169184137
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In presenting the final results, it is customary to set the eigenvector with
the greatest absolute value equal to unity. With this convention, the results
become

A =.2528214993
x; =.5723513651
Xg = 1

x3==.6691841368

We have seen that, for a set of n simultaneous equations, there
are n eigenvalues, that is, n values of A. It can be shown that, if the
iteration process based on Eq. 6-22 converges, it yields the root with the
smallest absolute value. In most physical applications, this is the root of
primary interest, and it is often the only root of interest. (A solution
based on Eq. 6-23 would yield the root with the greatest absolute value.
For this reason, Eq. 6-22 was chosen.) However, it sometimes happens
that higher eigenvalues are required, and we shall now develop a procedure
to find these.

It will be assumed throughout the remainder of this chapter that
the A and B matrices are symmetric. To find solutions for higher modes
of vibration, we need a relation between the eigenvectors for different
modes. Equation 6-20 is valid for any mode; we rewrite it for two distinct
modes, say p and g, with the mode numbers shown as superscripts:

AXP = NP BXP (6-25)

AX(® = D BX(D (6-26)

We now take the transpose of both sides of Eq. 6-25, recalling from Sec.
6-2 that the transpose of a product is equal to the product of the transposes
taken in reverse order. This leads to

X(MT4 = \PXPTR (6-27)

We have also used the fact that the transpose of a symmetric square
matrix is identical to the original matrix. We now premultiply Eq. 6-26
by X(T and postmultiply Eq. 6-27 by X9, then subtract. The result is

[AM@ — AP]XPTBY (D =0

We assume that the solution contains no multiple eigenvalues. Then
AP == A and it follows that

X(MTRX (9 =() (6-28)

This result is known as an orthogonality condition; it connects the eigenvec-
tors for two distinct modes. This may be broken into the two equations

F» = X(»TR F»YX =0
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(We have dropped the superscript g. Mode numbers are not needed for
the xs, because only current values are used at each stage of the calcula-
tions. It is clear that B is a square matrix, X is a column matrix, X®7
is a row matrix, and F'® is a row matrix. The product F(PX is a matrix
consisting of a single element. For the subsequent analysis, we need the
expanded forms

fim =3 byxp (6-29)
K=1

n

2 fiPx =0 (6-30)

j=1

The procedure is to start by finding the smallest root of A in Eq. 6-20
by iteration. This root is then eliminated from the system of equations
by using Egs. 6-29 and 6-30. We then solve the reduced set by iterating
as before to obtain the smallest remaining root (the second root of the
original set). This procedure may be repeated as many times as necessary
to obtain higher eigenvalues.

We have already found the eigenvectors x{! for the first mode of
vibration of the problem of Fig. 6-1. It now follows from Eq. 6-29 that

f{¥=1-.5723513651 = .5723513651

fo=3-1 =3

[P =2-.6691841368 = 1.338368274

Substitution of these results into Eq. 6-30 leads to the result

0=.5723513651x; + 3x. + 1.338368274x3 (6-31)

We use this equation to eliminate the last term on the right side of each
of Egs. 6-24. The results are

% = 5361756826, + .3792322490x, (6-32a)
f}f = 0723513651, + .7584644980x, (6-32b)
3‘)\—3 = —.3914729523x, + 1.862303253 x5 (6-320)

We solve these equations by iteration to find the results for the second
mode. If only A is required, the first two equations are sufficient. However,
if we want the xs, all three equations are needed. The results are

A =1.180920530
x1 = —.4417655105
X2 = —.3618410602
X3 = 1
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To find the results for the third mode, we need another orthogonality
condition. Using Egs. 6-29 and 6-30 with the new set of xs, we find
that

0 = —.4417655104x, — 1.085523181x, + 2x3 (6-33)

We use this resuit to eliminaie the last ierm on the right side of Eq.
6-31. It follows that

0 = .8679738369x, + 3.726414893x,

We use this equation to eliminate the last term on the right side of each
of the Eqs. 6-32. The results are

X+
1

2= 4478431486, (6-34a)
3;3 = —.1043137029x, : (6-34b)
i;ﬂ = 0423033572x; (6-34¢)

There is no need for another iterative process; the problem is solved at
this point. The results for the third mode are

A =2.232924637
x;1=1
X9 =—.2329246372
x3 = .0944602086

The same procedure can easily be applied to a set of any number of
equations.

The program follows. The first few parts are very similar to parts
of the programs of Sec. 6-2. Line 1 is the title. Line 10 assigns the value
of n, the number of equations. The next five lines are DIMension state-
ments. Lines 70 through 180 read the as and bs and print the A matrix.
(We again number the subscripts from 0 in the program.) Lines 190 through
260 print the B matrix. Lines 270 through 430 invert the A matrix, and
lines 440 through 510 calculate the product G = A~1B. Line 520 assigns
the value p = 1 for the first mode. Lines 530 through 700 carry out the
iterative evaluation of A and print the result. The fs are the values of
x;/\ found from the iterative equations; these are divided through by £,
(to in the program) to obtain the next higher set of approximations for
the xs. Line 720 is a dummy input statement of the type used in Sec.
2-1. Successive approximations for A are obtained by pressing the ENTER
key repeatedly. Line 730 then sends the execution back to iterate again.
After satisfactory convergence has been obtained, the operator enters X.
(Line 710 bypasses this operation if p = n, because no iteration is needed
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10
20
30
40
50
60
70
80
90
100
110
120
130
140
150
160
170
180
190
200
210
220
230
240
250
260

for the last mode.) Lines 740 through 840 normalize the xs with respect
to the greatest absolute value and print the results.

The remainder of the program is concerned with the calculation of
results for higher modes. Line 850 tests whether the current mode number
p is less than n, the number of modes. If p = n, execution ends at line
860. Otherwise, execution proceeds to the orthogonality calculations in
preparation for the next higher mode. Lines 870 through 920 calculate
the fs of Eq. 6-29. Instead of introducing a new subscripted variable F
into the program, we save memory space by reusing the variable A. (In
the program, there is no distinction between subscripts and superscripts.)
Lines 940 through 980 eliminate the last x between the new orthogonality
relation and the old orthogonality relations. (This segment is skipped by
line 930 on the first cycle.) Lines 990 through 1030 use the resulting
orthogonality relation to eliminate the last x from the iterative equations.
Line 1040 adjusts the value of p for the next higher mode, and line 1050
resets the dummy input variable to a null string. Line 1060 sends the
execution back to line 530 to start the iteration for the next higher mode.
The last few lines are the data lines for Eq. 6-21. Each line contains one
row of the A matrix and one row of the B matrix.

REM: MATRIX EIGENVALUES

N=3

DIM A(N—1,N) ~
DIM B(N—1,N—1)

Assigns value of n.

DIM G(N—1,N—1) r DIMension statements.

DIM X(N—1)
DIM T(N—1) J

PRINT
PRINT

FOR I=0 TO N—1
FOR J=0 TO N—1
READ A(LJ)

PRINT

"THE A MATRIX IS:"

ALD); Reads as and bs;

NEXT J [ prints as.

FOR J=0 TO N—1
READ B(LJ)
NEXT J

PRINT

NEXT I J

PRINT
PRINT

FOR I=0 TO N—1
FOR J=0 TO N—1

PRINT

NEXT J

PRINT

NEXT I J

"THE B MATRIX IS:"

BUJ); ¢ Prints bs.




270
280
290
300
310
320
330
340
350
360
376
380
390
400
4i0
420
430
440
450
460
470
480
490
500
510
520
530
540
550
560
570

580
590

600
610
620
630
640
650
660
670
680
690
700
710

FOR K=0 TO N—1
FOR I=0 TO N—1
A(ILN)=ABS(I=K)
NEXT I

FOR J=1 TO N
AK,DH)=A(K,))/AKK,0)
FOR I=0 TO N—1

IF 1=K THEN 360
AL)=ALN—-AK,NH*AI0)
NEXT I

NEXT J

FOR J=0 TC N—I
FOR I=0 TO N—1
AI)=A(1J+1)
NEXT I

NEXTJ

NEXT K

FOR =0 TO N—1i
FOR J=0 TO N—1
G(L))=0

FOR K=0 TO N—1
GILH=GILIH+AILK)*B(K.,J)
NEXT K

NEXT I

NEXT I

P=1

FOR I=0 TO N—1
X(@)=1

NEXT 1

PRINT

PRINT "THE VALUE OF LAMBDA
FOR MODE";P;"IS ";
IF P=N THEN 600
PRINT "FOUND BY ITERATION
AS FOLLOWS:";
PRINT

FOR I=0 TO N—1
T()=0

FOR J=0 TO N—P
TO=TAO+G(LI*XJT)
NEXT J

NEXT I

FOR I=0 TO N—1
XOH=TO/TE)

NEXT I

PRINT 1/T(0)

IF P=N THEN 740

-Inverts A matrix.

~Calculates matrix product G=4"1B.

Initializes p, the mode number.

Iterates for A
and prints result.

P

Bypasses iteration for last mode.



720
730
740
750
760
770
780
790
800
810
820
830
840
850
860
870
880
890
900
910
920
930
940
950
960

970
980
990
1000
1010

1020
1030
1040
1050
1060
1070
1080
1090

INPUT Q$ Interrupts execution.
IF Q$<>"X" THEN 610 Returns for next iteration.
Y=T(0) ]

FOR I=1 TO N—1
IF ABS(T(I1))<=ABS(Y) THEN 780
Y=T(I)

NEXT I

PRINT

PRINT "THE X MATRIX IS:"
FOR I=0 TO N—1

X(D)=T)/Y

>Normalize:s xs and
prints results.

PRINT X(I)

NEXT I J

IF P<N THEN 870 Proceeds to next mode if p<n.
END Terminates execution if p=n.
FOR J=0 TO N—1 )

A(PJ)=0

FOR K=0 TO N—1
AP,)=A(P,))+B(K,1)*X(K)

NEXT K

NEXT J )
IF P=1 THEN 990 '
FOR I=P—1 TO 1 STEP —1

FOR J=0 TO N—P+I
ALT)=ALI)—A(I+1,])
*A(LN—P-+I)/A(I+1,N—P+I)

rCalculates orthogonality factors.

§§§¥ ; Solve§ orthogonality

FOR 1=0 TO N—1 equations.

FOR J=0 TO N—P

G(LI)=G(,))

~G(I,N—P)*A(1,J)/A(1,N—P)

NEXT J

NEXT I J

P=P+1 Adjusts value of p.

Q¥="" Resets QS to null string.
GOTO 530 Returns for next higher mode.
DATA 2,—1,0,1,0,0 ‘

DATA —1,2,—1,0,3,0 Data lines for matrix elements.

DATA 0,—1,2,0,0,2

To operate the program, line 10 is filled in by the user. The data lines
at the end are also filled in by the user. When the program is run, the
computer performs one iteration for the lowest value of A and displays
the result on the screen, followed by a question mark. This represents
the dummy INPUT statement of line 720. To iterate again, the operator
177 presses the ENTER key, and the iteration is repeated. This operation is
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repeated until the results on the screen show satisfactory convergence.
The operator then enters X. The X matrix for the first mode is displayed,
and the computer starts the iterative process for the second mode. This
procedure is repeated until all the desired modes have been analyzed.
The evaluation may be carried through all the n modes, or it may be
terminated at any intermediate point by pressing the BREAK key.

This program runs as it stands on aimost any commoniy used modei
of microcomputer, with one reservation. The comment about the DIMen-
sion statement that followed the first program of Sec. 6-1 also obtains
here. The dummy input statement of line 720 also requires a comment.
With most microcomputers the act of pressing the ENTER key in response
to a string input question without entering anything enters a-null string,
that is, a string consisting of nothing. The TRS-80 and the Commodore
64 are exceptions. With these computers the entry of nothing simply restarts
ihe executiion and any preexisting siring is retained. This will work satisfac-
torily for the first mode. However, the X that is entered to print the X
matrix for the first mode will be retained permanently unless the program
contains an insiruction to clear it, and no iterations will be performed
for the higher modes. This trouble is eliminated by line 1050, which assigns
a null value to the string variable QS to start the iteration for each higher
mode, thus erasing X. This line is needed only for the TRS-80 and Commo-
dore 64, but may be left in the program for any other model, since it
does not increase the length of the program appreciably.

Three remarke ahnut the dienlay mav he helnful If ecnaces are needed
s about {he digsplay may be helpiul, I spaces are neeged

P43 S o £ $-4-1C3 §-+€

between the elements, the expression "; may be appended to lines 120
and 230. If spaces are desired between the rows, PRINT statements may
be inserted as lines 95, 215, and 815. Line 710 also requires a comment.
Since no iteration is required for the highest mode p = n, this line bypasses
the iterative process for p = n and prints the results automatically following
the mode p = n — 1. For a large matrix, the results for two modes
may not fit onto the screen at the same time. If the computer is used
without a printer, it may be necessary to delete line 710.

This program can be made a little more convenient to use by revising
it to include the extrapolation process of Sec. 2-1. The following amendment
accomplishes this. The convergence is greatly improved, and it is not
necessary for the operator to press the ENTER key for each iteration.
The iterations are repeated automatically until the estimated error of x,
is within the limit allowed by line 735. Double subscripts are now used
for the xs; the first subscript is the eigenvalue number as before, and
the second represents the stage of the extrapolation process.

50 DIM X(N—1,2)
525 INPUT Q$
540 X(1,0)=1

580 PRINT
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Problems

600 FOR K=1 TO 2

640 TI)=TI)+G(II)*X(J,K—1)
680 X(I,K)=T(I)/T(0)

700 NEXT K

705 FOR I=1 TO N—1

710 IF X(I,1)=X(1,2) THEN 740
715 R=(X(L,2)—X(, )/(X(I,1)—X(L0))
720 E=(X(1,2)~X(L,1))/(1—1/R)
725 X(L,0)=X(1,2)—E

730 NEXT I

735 IF ABS(E)>10A—7 THEN 600
785 PRINT 1/T(0)

820 X(L0)=T(I)/Y

830 PRINT X(I,0)

900 A(P,J)=A(P,J)+B(K,1)*X(K,0)
1060 GOTO 525

To operate the amended program, the operator enters RUN. The A and
B matrices appear on the screen, followed by a question mark. The operator
then presses the ENTER key, and the final iterated value of A for the
first mode appears on the screen, followed by the X matrix. Corresponding
results for higher modes are obtained by pressing the ENTER key once
for each mode. If the intermediate iterative values of A are desired, they
can be obtained by adding the following line to the program:

732 PRINT 1/T(0)

The allowable error in line 735 may have to be adjusted to fit the accuracy
of the computer, as discussed in Chapter 2.

Solve the sets of simultaneous equations 6-1 through 6-4. (Answers
are given in order x;, xg, . . ..)
6-1. 3x; — 4x, + 2x3 = —1
4x1 + 3)C2 - 6JC3 =1
2x; — 6x5 + x3 = —10 Ans. 5 3 =2
6-2. 2x; + x5+ 3x53 =15
x1+5x2+x3=-—3
3xy 4+ x3+ 2x3 =16 Ans. 4 —2 3
6-3. X1 — 3XQ -+ 2)C3 - SJC4 =6
—3x; + 2x2 — x3 + 2x4 =3
2xy — X3 + 4x3 — 2xs =11
—5x; + 2xy — 2x3 + 6x4 = —15 Ans. 1 3 2 —2
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6-4.

6-5.

6-7.

6-8.

6-9.

6-10.

6-11.

6-12.

6-13.

2X1— X9 =35

—x;+3x2— 2x3 =—4
'—2)C2+ SJC:J,_ X4=6
X3 + 4X4 =6

Verify the matrix operations 6-5 through 6-10.

C 3 4 212 1 3 g —15 9
4 3 —6|l1 5 1]=]-23 5 -2
[ 2 -6 1fl3 1 2 1 27 2
[ 3 =4 20 3] 19

—4 3 —6 --2|= —24
| 2 =6 1JL 1] L ow
"3 2 Fi2 38 —7 23

28 -3 5 I

Sl | D B IR R L R
=y L1 9 -7 6]
3 4 2] 33 8 18

4 3 =6 =5 8 1 -w0
2 6 1 18 —-10 7
2013 [0 -1

15 1] =—|-1 5 —1

23

3 1 2 14 —1 -9
T 1 -3 2 =57 26 —26 0 —13
3 2 -1 2| 1 |-26 64 9 —40

2 -1 4 —2 7] o 9 36 9
—5 2 -2 6 —13 —40 9 25

Invert the matrices on the right sides of Prob. 6-8 through 6-10,
and compare the results with the original matrices.

Evaluate the determinants of the three square matrices in Prob.
6-5. Observe that the value of the determinant of the product is
equal to the product of the values of the determinants of the factors.
It can be shown that this is true in general.

Ans. —31 =23 713,
Find the eigenvalues of the following system of equations:
3“1 — Ug i 3}\-ul

Uy + 2u2 - U3 =)\.U2

—up+ us=2Aus  Ans. 15521997 86653745 2.4782426



181 6-14. Find the eigenvalues of the following matrix equation:

Matrices and
Simultaneous 24 0 —12 72 0 —36
Equations 0 8 —6|=»x 0 8 —3

—-12 —6 12 —36 -3 36

Ans. 08286539 1/3 1.072690



Appendix: Numerical Methods

In this appendix we give derivations of three numerical methods: the Gauss
method of numerical integration, used in Chapter 4, and the Runge-Kutta
and Adams methods of solving differential equations, used in Chapter 5.

A-1. Gauss Integration

182

The basic formula for numerical integration is
b

I=J ydx=wiy1+wopa+. . .+ woyn (A-1)
a

where the y;s are the values of the function at » base points x;, and the
wjs are appropriate weighting factors. We represent the function y by a
polynomial

y=aptaix +ax2+. .. (A-2)

To obtain numerical results from Eq. A-1, it is necessary to specify the
values of x at the n base points at which the function is o be evaluated.



183

Appendix:
Numerical Methods

One obvious possibility is to use uniformly spaced base points. Then the
use of n points will determine the function y exactly and uniquely, provided
that y is a polynomial of degree not greater than n — 1, and the numerical
integration will be exact. Instead of arbitrarily choosing to place the base
points Xxj, Xz, . . . , Xp at equal intervals, we may choose to find the
values of the x;s that will lead to the most accurate numerical evaluation.
If the x;s are considered to be adjustable, as well as the w;js, we have
2n adjustable parameters, and it is possible to obtain an evaluation that
will give exact results for a polynomial of degree < 2n — 1. This is the
basic idea of Gauss integration.

Legendre polynomials play a major part in the theory of Gauss
integration. These are discussed in advanced calculus and have been consid-
ered briefly in Sec. 1-5. To take advantage of the orthogonality properties
of the Legendre polynomials, we change the interval of integration in
Eq. A-1, using limits —1 and 1 instead of a and b. We also change the
independent variable to £, reserving the symbol x for the general interval
a to b. After the analysis is completed on this basis, the results can easily
be applied to the more general interval by using Eq. 4-9b. The basic formula
now becomes

1
I=f ydé=wiyr +woys+. . .+ wp (A-3)
-1

We shall now find the values of the &;s and w;s, which lead to an exact
numerical integration provided that y is a polynomial of degree not greater
than 2n — 1. Let y be a polynomial of degree 2n — 1. Then y may be
written in the form

V= Po(E)gn-1(8) + ra-1(§) (A-4)

where P, (£) is the Legendre polynomial of degree #n, g, - (£) is the quotient
obtained by dividing P,(€) into y, and r,-(£) is the remainder. g, - (&)
and r,-1(£) are polynomials of degree n — 1. Substitution of Eq. A-4
into the middle member of Eq. A-3 leads to

1=[ Pu@au-s@®dt+ [ ra@ae

Since the function g,-,(£) is a polynomial of degree n — 1, it can be
expressed as a linear combination of Legendre polynomials of degree not
greater than n — 1. Each of these is orthogonal to P,(£) in the interval
—1 to 1. Therefore the first integral on the right side of the foregoing
equation is zero, and it follows that

I= j Fu-i(E)dE (A-5)
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Numerical Methods 1= 3 w; [Pu(€:)n-1(&) + ra-1(&))] (A-6)

j=1

We want the numerical evaluation of Eq. A-6 to give exactly the same
result as the exact expression of Eq. 6-5. Since the latter expression is
independent of ¢y - 1(€), the former one must be also. This is true if and
only if

Pa(€)=0 (A-7)

that is, the &;s are the zeros of the Legendre polynomial Py (£).

We now have an equation for the &;s; we still need an equation
for the w;s. To obtain this, we use the Lagrange interpolatory expression
for y. This has appeared previously as Eq. 1-17. With £ substituted for
x, the equation is

nE— &y
‘1€1_€2 !

=3 (Aa-8)

By integrating both sides of this equation between the limits —1 and 1,
then comparing the resuii with Eq. A-3 and maiching coefficienis of corre-
sponding terms, we find that

flugj gé, de

i*j

1 f " M-t
= =1 d¢
G5y G-ENE B . Gt -

(A-9)

It is clear that P,(£) can be expressed as
Pu®)=c Il €—&)
i=

where ¢ is the coefficient of £ and the &;s are the roots of Eq. A-7. It
follows that

Prg)=cl—¢&) ... . & —&-0& &) - - . (& — &)

Equation A-9 now becomes
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1 P

STes) Bt (a-10

To evaluate this integral we need Christoffel’s summation formula
(reference 7, page 101). This is

7 [P 0P® — Pa(0Pa-i(®)

= [Po()Po(§) + 3Py ()PUE) +. . .+ 21— DPor()Pr-1(§)] (A-11)
We set t = £; and use Eq. A-7. Then it follows that
P()) _ 1
E—§& nPaa(&)
+(2n — 1) Pp-1(&5) Pu-1(8)] (A-12)

[Po(£))Po(&) + 3Pu(E)Pu(E) +. . .

We substitute Eq. A-12 into the right side of A-10. The integrals of all
of the terms in brackets except the first are equal to zero, and we find
that

2

ST YA N

The parameter P,(&;) will be evaluated by the procedure of Chapter 1,
using a recurrence formula. During this process we will obtain the value
of P,-1(£;) as an intermediate step. To use Eq. A-13, we also need the
value of P;(&;). It is shown on page 100 of reference 7 that

Pi(®) =T_~_’1-£-; [Pu-s(®) — EP.(®)] (A-14)

With the help of Eq. A-7, it follows that

Pn—l J
Pé(&j)z%-_‘jg—)

Equation A-13 can now be rewritten as

_ 20—

¥ nPa (&P (A-15)

We now have the necessary equations to evaluate the Gauss coeffi-
cients. The &;s are found from Eq. A-7, with the help of the equations
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¢;s and wys actually have to be calculated. Since each Legendre polynomial
contains only even powers or only odd powers, the &;s given by Eq. A-
7 occur in % pairs. Also, the corresponding w;s occur in positive pairs,
since only squares of the parameters appear on the right side of Eq. A-
15. Hence it is sufficient to consider the n/2 positive values of &; if n is
even, or the (n + 1)/2 positive values (including zero) if » is odd. For
n = 1 through 5, the evaluations can easily be made algebraically. The
results are

—
[\
oo

1 - 40 1/2 l
bas=7 (5 ¥ 7) Waa = g (22 % 13 V/70)

For larger values of n, the best way to evaluate the Gauss coefficients
is to write a program. We shall use a program segment based on Sec. 1-
5, to evaluate P,(£). We will need the recurrence Eq. 1-15, which is

Pasa(®) = (20 + DEPLO) — nPas(B)] (A-16)

We shall then find the root & of Eq. A-7 by using the Newton-Raphson
method of Sec. 2-2. The weighting factor w; will be found from Eq. A-
15. There is one essential element that we do not yet have; an estimate
of &; is needed to start the iteration process. We can get this from the
equation

— 1 1/2
& =<” ) sin [71 G- .5)] (A-172)
n—.5 n
n
. j=123, ... =
neven, j 5

or
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3 =(::_15)”2 sin [3’2 G- 1)] (A-17b)
n+1
2

nodd, j=123, ...,

The number of iterations required for convergence to ten significant figures
isj+ 3.

The program follows. Line 1 is the title. Line 10 generates a blank
line between successive sets of output. Line 20 calls for the value of n.
Line 30 prints the headings for the output, which will appear as a table.
Line 40 calculates a parameter L, which will be used to distinguish between
even and odd values of » in equations A—17. Lines 50 through 190 consti-
tute a triple FOR-NEXT loop that calculates and prints the values of
the £;s and wys. Line 60 calculates the starting estimate of &;, using Eq.
A-17. The innermost loop of lines 100 through 140 calculates P,(&;),
using Eq. A-16. The middle loop of lines 70 through 160 performs a
Newton-Raphson iteration to find the value of £; that satisfies Eq. A-7.
Equation A-14 is used in line 150. The outer loop of lines 50 through
190 calculates w; in line 170, using Eq. A-15, prints the final values of
& and wj, and repeats the entire process for all required values of j.
Line 200 returns the execution to the beginning in preparation for further
calculations with other values of n.

1 REM: COEFFICIENTS FOR GAUSS INTEGRATION
10 PRINT
20 INPUT "N=";N
30 PRINT" XI")" W"
40 L=N/2-INT(N/2)
50 FOR J=1 TO (N+1)/2
60 X=SQR((N—1)/(N—.5))*SIN(3.141592654*(J—.5—L)/N)
70 FOR K=1 TO J+3
80 PO=1
90 PI=X
100 FOR I=1 TO N—1
110 P2=((2*I+1)*X*P1—I*P0)/(1+1)
120 PO=P1
130 P1=P2
140 NEXT I
150 X=X—(1—X*X)*P1/N/(PO—X*P1)
160 NEXT K
170 W=2%(1—X*X)/(N*P0O)A2
180 PRINT X,W
190 NEXTJ
200 GOTO 10

Results found from the program agree with those given in the table of
Sec. 3-2.
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THE RUNGE-KUTTA METHOD
To derive the Runge-Kutta formulas, we start with Eq. 5-1, which is

Y =rf(xy) (A-18)

The Taylor series expansion of y is

h2
yier=y;i + hyi +—2—yi" +. . (A-19)

where & = x;+; — x;. This may be rewritten as
h2
yi+1=yi+hfi+~2-(ﬂci+ﬁfyi)+. .. (A-20)

where f; = f(x;, y;) and the subscripts x and y denote partial derivatives.
We assume an approximation of the form

Vi+r = Yi + aahf(xi, i) + axhf(xi + Bih, yi + B2hfy) (A-2D)
and proceed to determine the constants a;; oz, 81, and B2 so that a Taylor
series expansion of the right side of Eq. A-21 will agree with the expansion

Eq. A-20 through terms of second degree in A.
The Taylor series expansion of f(x; + Ay, yi + Ag) is

SO+ Dy, pi D) =fi+ Dafu + Bofifyr +. ..

By setting A; = 81k, A2 = B2h, and substituting the result into the last
term on the right side of Eq. A-21, we find that

Yi+1=yi + (a1t ax)hfi + azh*(B1foi + Bafifyi) (A-22)

By equating coefficients of corresponding terms on the right sides of Egs.
A-20 and A-22, we find that

1
a1+a2=1 Blzﬁzz—'—_
2(12

There are only three equations for four unknowns, so we have some freedom
in choosing the consianis. The simplest equations are obtained by setiing

1
a1=a2=5 Bi=B=1
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h
Yir1=y + 2 (91t q2) (A-23a)
where
G =f(xi,p1) q2=f(xi +h,y+q) (A-23b,c)

More accurate formulas are obtained by considering higher-order terms
in the Taylor series. By considering terms through A% we obtain Egs.
5-2. More complete derivations can be found in books on numerical analy-
sis. (See, for example, reference 5 or 10.)

THE ADAMS METHOD

We shall give a very simple derivation of the Adams method; more sophisti-
cated derivations can be found in books on numerical analysis. We start
by rewriting Eq. A-18 in integral form as

s =yt [l poar =i+ [ foyax (a-24)

The subsequent algebra can be simplified by taking the origin at the point
x = x;. This will not affect the generality of the results. Then Eq. A-24
becomes

h
Por =y + f fd (A-25)

We need an approximate expression for f(x). We choose the cubic polyno-
mial

S(x)=ao+ aix + azx2+ azx3 (A-26)

Then Eq. A-25 becomes
1 1 1
Yi+1 = Vi "*‘aoh +'2‘(11h2+§(12h3+203h4 (A-27)

We assume that values of y are available at the four points x; = 0, x;-; =
—h, Xi-2 = —2h, x;-3 = —3h. By fitting the polynomial of Eq. A-26 to
these four points, we arrive at the set of simultaneous equations



190

Appendix:
Numerical Methods

fi=ao
fi-i1=ao— aih + ah? — azh®
fi—e=ao—2ah + 4a,h? — 8azh3
fi-a=ao— 3a;h +9ah?— 27ash?

where we have written f for f(x). The solutions are

aozﬁ

1/11 3

= (T A=+ fie— A
a, hk6j Ji~1 2] 3.f }

Substitution of these results into Eq. A-27 leads to

Yin1= (55f 59f; -1+ 37fi-2 — 9fi—3) (A-28)

This is the predictor Eq. 5-7a.

Equation A-28 has been obtained by extrapolation. The more accurate
corrector Eq. 5-7b is obtained by using values of f at the points x;+; =
h, x; = 0, ;-1 = —h, x;—2 = —2h. The simultaneous equations are
fz:+1 =ae+ aih + ash?+ azh?
fi =ao
ﬁ—l =ao— ayh + azh®— agh?

ﬁ—z =g 2a1h -+ 4a2h2 - Saaha

The solutions are

ao=f;
ar=; (34—~ fin+gfis)
ar=o (3 i = fi+3 5

1 /1 1 1
asz = }13(6f+1 fi+§ﬂ—1 5ﬁ 2)
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. Appendix: h
Numerical Methods Pi+1=y1 +§Z Ofi+1+19F —5fi-1+ fi-2) (A-29)

which is the desired result.
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Suggested Solutions
to Selected Problems

Chapter 1 ~ 1-3. There are many possible ways of programming this calculation. An
example follows using relational expressions.

10 INPUT N
20 S=.1*N—.01*ABS((N>5)*(N—5)+(N>10)*(N—10)+(N>15)*
(N—15))
30 PRINT S
1-5. a. The general term is

1 B 1 3 1
[n(n + D(n + 2)]? - [n(2 + 3n + n?))? - [n@+ n(3+ n)}?

A program follows:

10 S=0

20 J=1

30 PRINT

40 INPUT "N=";N

50 FOR J=J TO N

60 S=S+1/(T*Q+T*GHNNA2
194 70 NEXTJ
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80 PRINT "S=";S
90 GOTO 30

Varying levels of accuracy are obtained by entering increasing values
of n as input. Some results are shown in the following table:

n 10 20 30
S .0299001 .0299010 .0299011

The last result is correct to the full number of digits shown.
¢. The nested format works very well with this series. We rewrite it as

-4 (A0AE- - )

A program follows.

10 INPUT "N=";N

20 S=1/N

30 FOR J=N-1TO 1 STEP —1
40 S=1/J-S/2

50 NEXTJ

60 PRINT S

The number in line 20 is the number at the extreme right of the
nested equation. The FOR-NEXT loop executes n — 1 cycles, pro-
ceeding from right to left and summing »n terms of the original
series. With n = 30, we obtain the result S = .8109302162, which
is correct to ten significant figures.

. In expanded form, the equation for the binomial coefficient is
- —2)...(p—q+1
(g) _plp—1)(p—2) (p—gth pg>1
q g(g—1)(¢g—2) ... .1

A program follows. A GOTO statement has been included at the
end so the program can be used repeatedly without entering RUN
each time.

10 PRINT
20 INPUT "ENTER P,Q";P,Q
30 B=l

40 IF Q=0 THEN 80

50 FOR J=0 TO Q—1

60 B=(P—J)/(Q—T)*B

70 NEXTJ

80 PRINT B

90 GOTO 10
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Chapter 2

1-7. The program may be revised as follows:

45
50
110
120
130

J=3

FOR J=J TO N
INPUT N
GOTO 50
DATA 1,2

1-11, A program follows:

10
20
30
40
50
60

INPUT X(1),X(2),X(3)
FOR j=1 TO 3

F(0)=8QR(G—XJ)*(G—XI)*(2+X (1))

NEXT J
Y=F(1)—3*F(2)+2*F(3)
PRINT Y

1-12. A program follows:

1
10
20
30
40
50
60
70
80
90

100
110
120
130
140

2-1. 3.69344 1359 2-2, 1.91967 5341 2-3.

REM: SORTING NUMBERS
DIM X(100)

PRINT

N=N+1

INPUT X(N)

IF N=1 THEN 130

FOR J=N TO 2 STEP —1

IF X(J)<=X(J—1) THEN 110
T=X(J)

X@)=XJ—-1)

X(J—1)=T

PRINT X(J);",";

NEXT J

PRINT X(1)

GOTO 20

62401 75637

24. 2.611720144 2-5, +1.89549 4267 2-6. +.82376 78331
2-7. 1.16556 1185
2-8. The equation to be solved is

y=x2—5=0

The Newton-Raphson equation is

X = Xg—

2

X=5 1/ 5)
=={x+=

2x° 2\ Xo.

The result is 2.23606 7978.
2-9, 1.70997 5947
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20
30
40
50
60
70

Chapter 3

2-12,

2-13.

a. —.24697 96037, 1.44504 1868, 2.80193 7736

b. 5.00526 5097, —2.50263 2549+£.83036 679881

c. 1.368808108, —1.684404054+3.43133 1350i

Using only the first subscript for the 7s, the program may be revised
as follows:

INPUT "ENTER SX,SY,SZ";SX,SY,SZ

INPUT "ENTER TX,TY,TZ";TX,TY,TZ

A=]

B=—8X—SY—SZ
C=SX*SY+SY*SZA+SZ*SX—TX*TX—TY*TY-TZ*TZ
D=SX*TY*TY+SY*TZ*TZ+SZ*TX*TX—SX*SY*SZ

2-15.

2-16.

3-3.

—2*TX*TY*TZ
Also, line 2 may be deleted.
For the input of the problem, the results are

—89.07759 661 55.95553 186 103.12206 47

This program can also be used for the calculation of principal mo-
ments of inertia. The tensile stresses correspond to moments of inertia
and the shear stresses correspond to products of inertia with reversed
signs.

a. ++/2, 15 (1 £4/5)

b. —1%£4/3, 1%(1%/13)

c. B(1£4/5), 1£2i

d. BB =+5), 1£iV/3

Rough preliminary calculations show that the equation has only
two real roots, with approximate values 2.7 and —.7. By one of
the iterative methods of this chapter, we obtain the improved values
2.73205 0808 and —.73205 0808. We then divide out the factor

(x +.73205 0808)(x — 2.73205 0808) = x2 —2x — 2
from the sixth-degree equation to obtain
x4+ x3+5x2+5x+12=0

which can be solved by the program of Sec. 2-7. The complete results
are

1£3 —1=%iv/2 %B(1+i/15)

The following amendments to the program for E;(x) are needed.
We use P for n, because N has already been used in the program.

20 INPUT "ENTER X,N";X,P
140 EP=El

150 IF P=1 THEN 190

160 FOR J=2 TO P

170 EP=(EXP(—X) —X*EP)/(J—1)
180 NEXT J
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3-4.

3-7.

3-8.

3-9.

190 PRINT EP
200 GOTO 10

The nested form of this equation is

T

—‘——Lrp 22 2x2
erf.,—\/« {1+ 3 (1+ (1+ h-%—))))

The following amendments to the program of Sec. 3-3 are needed:
40 S=1

60 S=1+2*X*X/(2*¥J+1)*S

80 ERF=X/SQR(ATN(D)Y/EXP(X*X)*S

. This problem resembles the asymptotic evaluation of E;(x) in Sec.

Aoty

- Tho a P
3-2. The nested form of the Cquauuﬂ iS

erex =2 (135 (155 (-5 0 ()

A program follows:

10 PRINT
20 INPUT "X="X

30 N=INT(X*X+1.5)

40 S=5

50 FOR J=N—1TO 1 STEP —1

60 S=1—(2*T—1)/2/X/X*S

70 NEXTJ

80 T=S/SQR(ATN(1))/2

90 PRINT "ERFC(X)=";T/X/EXP(X*X)
100 PRINT "XEXP(X*X)*ERFC(X)=";T
110 GOTO 10

The following substitutions may be used:

a. x=bsin® b. x=bcosf c. x=btan0
d. x =(a?cos? @ + b2sin? 0)/2

The required amendment follows. In this case the nested format is
more complicated—and less efficient—than direct summation.

110 S=142*S/Q
130 E=P*(1—K*K*R*S/2)

With some computers, the amended program generates an overflow
for small values of k.

This problem resembles Prob. 1-6. However, it cannot be solved
by the same method, because p and g are not necessarily integers.
The best procedure is to use the factorial program of Sec. 3-5 as a
subroutine to evaluate (p — D, (¢ — Dl and (p + ¢ — DL A
program follows:
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3-10.

{ REM: BETA FUNCTION
10 PRINT
20 INPUT "ENTER P,Q ";P,Q
30 Z=P—1
40 GOSUB 160
50 Ul=U
60 Z=Q-—1
70 GOSUB 160
80 U2=U
90 Z=P+Q-—1
100 GOSUB 160
110 U3=U
120 PRINT "P=";P
130 PRINT "Q=";Q
140 PRINT "B(P,Q)";U1*U2/U3
150 GOTO 10
160 R=1
170 IF Z>=5 THEN 210
180 Z=Z+1
190 R=Z*R
200 GOTO 170
210 S=1/99
220 FOR J=1 TO 4
230 READ C
240 S=1/C—S/Z/Z
250 NEXTJ
260 RESTORE
270 T=(Z+.5)*LOG(Z)~Z+.5*LOG(8*ATN(1))+S/Z/12
280 U=EXP(T)/R
290 RETURN
300 DATA 140,105,30,1

We rewrite the equation in nested form as

T | — 2 2

Hpy(x)= 1-

35...@2p+1) 3< 3) —5( 5)
— _l._._ — ,_I,__
2\P 73 2\P 73

A program follows. It is organized in the same way as the program
for Jp(x) in Sec. 3-6.

1 REM: STRUVE FUNCTION HP(X)
10 PRINT

20 INPUT "ENTER P,X ";P,X

30 N=INTQ2*X+5)

40 S=1

50 FOR J=N—1TO 1 STEP —1
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60 S=1—X*X/4/(J+.5)/(P+I+.5)*S

70 NEXTJ

80 FOR J=0 TO P

90 S=S/(2*J+1)

100 NEXT J

110 PRINT "P=";P

120 PRINT "X=";X

130 PRINT "HP(X)=";S/2/ATN(1)*XA(P+1)
140 GOTO 10

Chapter 4 4-9. See Prob. 1-9.

4-10. The integrand is infinite at the lower limit. Integrate by parts to
show that

7/2 T2 X
f Insin x dx = —f dx
.’ 0 0 tan x
The new integral is proper. It has been evaluated in Sec. 4-2.

4-11. The integrand is infinite at the upper limit. By writing #/2 — x
for x, show that

m 2
f xlnsmxdx=7rf In sin x dx

0 0

Then use the result of Prob. 4-10.

4-12-14. Gauss-Chebyshev integration works very well for these three inte-
grals.
4-17. We observe that

J“"’ xdx 1 * xdx
oe®*—1 a?Joer—1

The desired results now follow from Prob. 4-16.
4-18. A numerical evaluation is not necessary; we observe that

I"" xdx _J"” xdx __J‘“’ 2x dx _1J’°" x dx
0€I+l oez““‘l oe“—l 2 oer—l

The desired result now follows from Prob. 4-16.

4-19. This integral can be evaluated numerically as it stands, since it is
proper. However, the process converges very slowly. It is preferable
to write e /2 for x, then use the result of Prob. 4-16.

4-20. This integral can be evaluated by writing tan x for x, but the resulting
program has a long running time due to a long subroutine and
slow convergence. It is preferable to start with the elementary identity

[m[ ! ! }dx=ln[x+l(l—e‘1>]w=0

Jo e’——l—x(x—Fl) x 0
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4-21.

Chapter 5 5-13.

The desired integral now becomes

dx
I -
J' <l+x ¢ )x

We break the interval at the point x = 1 and write 1/x for x in
the second of the new integrals. This leads to

1
I:f (1 - T — e—ll:t)_d«"_c
1] X

which is well suited to numerical integration.
The substitution ¢t = tan 8 leads to

T2 e~tan 2]
Ei(x) = f £ 46

arctan z Sin @ cos @
T2 Qe —tan (]
- I do
arctan z Sin 20

It follows that

T2 2 xe*t-tan 2]

xeTE(x) = f -
( ) arctan z  Sin 20

There is a conflict between the nomenclature of this chapter and

that of Chapter 3; the variable of integration is now x. Instead of

typing in the value of the arc tangent for each value of x, we edit

this conversion into the program. The new lines are

42 INPUT "X=";C

44 A=ATN(C)
200 Y=2*C*EXP(C—-TAN(X))/SIN(2*X)
230 DATA 0,1.570796327
The first entry in line 230 is immaterial, since this is read as a in
line 10 and then replaced by an assignment in line 44. For x = 2,
we obtain the following results:

m 1 2 3 4
I 772673 .772657229 .772657223 772657234

The last result is correct to the full number of digits shown. Since
the value of x is entered by an INPUT statement, the program
can be used for other values of x without further editing by simply
pressing the BREAK key, then entering RUN.

The program may be amended as follows:

248 FOR K=1 TO 2

260 Y=YO+H*(9*Q+19*FO0—5*F1+F2)/24
262 NEXT K

264 YO=Y
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5-14. The following changes may be added to those of Prob. 5-13.

5-23.

5-26.

5-33.

246
264

YP=Y
YO0=(251*Y+19*YP)/270

The program may be amended as follows:

55
145
410
430

Q=—1/3

IF X=0 THEN 240
Q= —2*U/X~YA5
DATA 0,1,0

Observe that there is a singular point at x = 0. Follow the procedure
used for Eq. 5-16, first showing that p = —15.

The easiest way to accomplish this is to start with the program of
Sec. 5-2 for two simultaneous equations. The following revisions
are needed:

10

92

94
152
154
162
164
170
192
194
232
234
260

READ X0,Y0,U0,V0,W0
SC=0

SD=0

V=VO+E*QC
W=WO-+E*QD

QB=V

QC=W
QD=2*W—3*V+5*U—3*Y
SC=SC+C*QC
SD=SD+C*QD
VO=VO+H*SC/6
WO0=WO0-+H*SD/6

DATA 0,1,1,1,1
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ABSolute value function 8

Adams method for differential equations:

of first order 120-23

of fourth order 135-37

of second order 128-30
Arc TaNgent function 8
Assignments 2

BASIC language, introduction 1-8
Bessel functions:
of first kind 80-82, 142(5-26,27)
of second kind 82-85
Beta function 87(3-9)
Binomial coefficient 31(1-6)
Boundary value problems 137-40
BREAK key 6
Bubble sort 29n

Commands 4
Complementary error function 86(3-6)
Convergence:

of Gauss integration 95-96, 98-100

Convergence (cont.)
of infinite series 15-16
of iterative root finder process 37-39
of Newton-Raphson process 45
of numerical solutions of differential
equations 123-24
of Romberg integration 103, 105-7
COSine function 8
Cosine integral 68-69

DATA statement 18-19
Dawson’s integral 86(3-5)
Determinants 165-68
Differential equations 116-43
DIMension statement 27, 29
Dummy INPUT statement 35
Discontinuous functions 8-13

Elliptic integrals:

of first kind 76-77, 87(3-7)

of second kind 77-78, 142(5-28)
ELSE statement 10
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END statement 2, 22
ENTER key 2
Error function 75-76, 86(3-4)

complementary 86(3-6)
Experimental data 19-21
EXPonential function 8
Exponential integral:

Ei(x) 69-70

Ey(x) 70-75, 85-86(3-2), 114(4-21)
Exponentiation 4, 73
Extrapolation 39-42

Factorial (elementary) 14-15
Factorial function 79-80
FOR-NEXT loop 13-19

Gamma function 7%n
Gauss integration 93-100

modified 96-100
Gauss-Chebyshev integration 109-11
Gauss-Hermite integration 113
Gauss-Laguerre integration 113
GOSUB statement 21
GOTO statement 5

Hermite polynomials 32(1-10)

IF-THEN statement 8-13
Indeterminacies 92
Infinite series 15-18
Initial value problems 137
INPUT statement 5
INTeger function 8
Integrals 88-115
with discontinuous integrands 107-8
with infinite intervals 11-13
Interpolation 25-27
inverse 27
Iteration
for differential equations 123-24
for eigenvalues 168-79
for roots of equations 33-42

Lagrange interpolation 25-27
for roots of equations 48-51
Legendre polynomials 23-25
LET statement 2
LOGarithmic function 8

Matrices 154-65, 168-79
addition 155

eigenvalues 168-79
inversion 159-63
multiplication 155-58
transposition 156-57

Nested format:

for polynomials 4

for infinite series 17
Newton-Raphson method 4245

ON-GOTO statement 12
Oscillatory functions 92
Overtlow 62, 73

Periodic functions 12-13
PRINT statement 3
Prompt mode 4
Prompting message 6

Quadratic equations 51-53
Quartic equations 59-64

READ statement 18-19
Recurrence formuias 23
Relational expressions 10-11
Relational operators 10
REMark statement 7
RESTORE statement 19, 80
RETURN key 2
RETURN statement 21
Romberg integration 100-107
Roots of equations 33-65
Roundoff errors 70-73, 86(3-3)
RUN command 2
Runge-Kutta method for differential equa-
tions:

of first order 116-20

of fourth order 132-35

of second order 124-28

Secant method 45-48

SiGNum function 8, 12

Simultaneous equations 144-54
with symmetric matrix 148
with tridiagonal matrix 151-54

SINe function 8

Sine integral 66-68

Singular points of differential equations 130-

32, 142-43(5-23 to 5-28)
Sorting numbers 27-30, 32(1-12)
SQuare Root function 8
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STEP statement 14

STOP statement 22

Strings 7
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Subroutines 21-22
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Underflow 62
User-defined function 22-23

VALue function 30
Variable names 2









Technical_J

P ————

8"62663

If scientific and numerical analysis is an integral part of your
profession, your whole day shouldn’t be spent on calculations'

Now, with this book, you'll learn the sound and speedy program-
ming principles and computational techniques that let you success-
fully perform everyday numerical analysis tasks on almost any
microcomputer—all using the simplified, practical form of BASIC
shown here! From the fundamental to the highly complex, you can
now use your computer to solve

* roots of equations
* transcendental functions
°* numerical integration
* matrices and simultaneous equations
* differential equations
With these techniques, plus the ready-to-run BASIC programs,
practice problems, and suggested programming solutions in the

book, learning and doing numerical analysis can be as easy as
you’'ve always wished.

H. R. MECK received his B.S. from Lehigh University and a masters
degree from Harvard. He first pursued a career in industry and
government solving engineering problems in atomic energy, then
went on to become a freelance writer. The author of many published
journal articles in the field of solid mechanics, Mr. Meck also wrote
the successful book Scientific Analysis for Programmable Calcula-
tors.

PRENTICE-HALL, Inc., Englewood Cliffs, New Jersey 07632

P

ISBN 0-13-k2kk31-2





